
UNCERTAINTY IN COPEPOD MORTALITY RATES AND FATES: �
IMPLICATIONS FOR ECOLOGICAL LINKAGES�

ICES/PICES Zooplankton Production Symposium: Workshop 5 �
May 2016�

END � END �

?�
Wendy Gentleman �

�
Erica Head�

Tom Anderson �



UNCERTAINTY IN COPEPOD MORTALITY RATES AND FATES: �
IMPLICATIONS FOR ECOLOGICAL LINKAGES�

ICES/PICES Zooplankton Production Symposium: Workshop 5 �
May 2016�

Wendy Gentleman �
Erica Head�

Tom Anderson �



UNCERTAINTY IN COPEPOD MORTALITY RATES AND FATES: �
IMPLICATIONS FOR ECOLOGICAL LINKAGES�

ICES/PICES Zooplankton Production Symposium: Workshop 5 �
May 2016�

END � END �

?�
Wendy Gentleman �

�
Erica Head�

Tom Anderson �







CO2 �

O2 �

NH4 �

DOM�

etc.�



END � END �

“MORTALITY”�

 PREDATION + EXPORT 
OF LIVE�

EXPIRATION �

ZOOPLANKTON �

COPEPODS�

EXPORT �
OF DEAD �



MORTALITY �
RATES�

MORTALITY�
FATES�?�



Modeling choices matter! �
�

Many previous studies: coefficients & closure�

MORTALITY �
RATES�

MORTALITY�
FATES�?�



?�MORTALITY �
RATES�

MORTALITY�
FATES�

Modeling choices matter! �
�

Many previous studies: coefficients & closure�
�

Today: Two issues that are not as widely recognized, �
both relate to expiration �
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mEgg �

	  
	  

A = Abundance �

Ai�

mNaup � mCop�

METHODS FOR ESTIMATING COPEPOD MORTALITY�

Founded on models of �
copepod population dynamics�

mi Ai�



mEgg �

	  
	  

Observed �
Ai�

mNaup � mCop�

Estimated mi = �
rate for which�
model fits data�

A = Abundance �

Ai�
mi Ai�

METHODS FOR ESTIMATING COPEPOD MORTALITY�



mEgg �

	  
	  

mNaup � mCop�

"Most common �
" "= “vertical” methods = simple formulae from simplified model �
" "(Mullin & Brooks, 1970; Aksnes & Ohman, 1996; Gentleman et al., 2012) �
" "�

" "= use of aggregate “stages” "�
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Hirst et al., 2007 showed standard methods are biased 
when egg viability (i.e. hatching success) < 100% �
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 e.g. Basic method for “stage” 1  (1 = Eggs or Eggs + Nauplii)�

  

A1

AF

=
ε 1− S1( )

m1

Survivorship:�

   S1 =e-m1D1

Observed ratio of �
stage abundances�

may include�
dead individuals�

Mortality �
≠ death �
�

Total egg production �
≠ viable egg production �

“Stage”�
Duration �
≠ period of�
expiration �

Mortality =�  1 ≠ m1



NEW METHODS ACCOUNTING FOR VIABILITY <= 100% �
(Gentleman & Head, under revision)�

L1	  

Based on model that considers expiration of “stage” 1 �
(1 = Eggs or Eggs+Nauplii, R = Recruitment, S = Survivorship, L = Loss)   �

R2	  =	  R1	  S1	  

REgg	  
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NEW METHODS ACCOUNTING FOR VIABILITY <= 100% �
(Gentleman & Head, under revision)�

•  Biggest effect for 
highest survivorship �

•  Minimizing egg 
expiration key for 
recruitment  �

•  Previous negatives 
now all positive�

•  Changes regional 
means by >20%�
"(Head et al., 2015)�

•  Biggest effect at 
lowest “mortality”�



METHODS ACCOUNTING FOR VIABILITY <= 100% �
(Gentleman & Head, under revision)�

 Aggregating stages masks significance of expiration �
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PARTITIONING MODELED ZOOPLANKTON MORTALITY�
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SENSITIVITY OF ECOSYSTEM DYNAMICS TO �
PARTITIONING ZOOPLANKTON MORTALITY�

(Gentleman & Anderson, in prep)�

•  Generic NPZD (Anderson et al., 2015)�
•  Forced with Seasonal Temp, Light, MLD & �
   deep NO3 for Station India �

First set of simulations look at fate of expiration: 
Contrast 3 extreme cases�
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•  Fast remin ≠ Fast sink �
•  Size and nature of dead 

key for local nutrient 
regen (bottom up)�
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of total mortality: Contrasts 4 cases�
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2. Expiration fraction of total mortality: Contrasts 4 cases�
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(Gentleman & Anderson, in prep)�

•  Generic NPZD (Anderson et al., 2015)�
•  Forced with Seasonal Temp, Light, MLD & �
   deep NO3 for Station India �

•  Pred vs. Exp affects ecosystem structure & function �
•  Here: Linear ≈ “None”, i.e. Total Mort ≈ Pred�



SUMMARY & DISCUSSION POINTS�

 Today: Importance of Expiration�
•  Expiration biases estimation of early stage mortality rates �
•  New methods show egg viability is a significant factor for 

survivorship, which is masked by aggregating early stages�
•  The size and composition of dead individuals impacts local 

nutrient regeneration vs. export �
•  The relative importance of local predation vs. expiration affects 

ecosystem structure & function �

Uncertainty in copepod mortality rates and fates limits our 
understanding and prediction of Zooplankton Community 
Structure, Zooplankton Ecological Linkages, and Export �

Ecological implications include copepod recruitment, food for 
copepod predators and pathways for the biological pump. More 
consideration needs to be given to the ecological role of 
expiration, and its relative importance to other loss processes 
(e.g. predation & physiology as well as transport & migrations).�


