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Abstract 

A new time-dependent continuous model of biomass size spectra is developed. In this model, 
predation is the single process governing the energy flow in the ecosystem, as it causes both 
growth and mortality. Predation is size-dependent. The ratio of predator to prey is assumed 
to be distributed: predators may feed on a range of prey sizes. Under these assumptions, it is 
proven that linear size spectra are stationary solutions of the model. The slope of this size 
spectrum is insensitive to the magnitude of processes in the food web, such as the width of 
prey size distribution, the volume of water searched while foraging or the assimilation 
efficiency. Exploited fish communities are simulated by adding a size-dependent fishing 
mortality to the model: it is found that realistic fishing pressures should not affect the slope 
of size spectra, but their shape and stationarity. 
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1. Introduction 

Fish size spectra, the distribution of biomass over body size classes in a fish community, have 
a long time ago been reported as a regular and conservative characteristic of fish 
communities (Pope and Knights, 1982; Murawski and Idoine, 1992). The size spectrum is 
stationary within an exploited community, even when species composition changes, but vary 
between systems: the variations may be ascribed to fishing. Several authors have 
hypothesised that exploitation should decrease the slope of a fish size spectrum, and reported 
decreasing trends of this slope in exploited systems (Pope et al., 1988; Anonymous, 1995; 
Anonymous, 1996; Greenstreet and Hall, 1996; Rice and Gislason, 1996), although this 
pattern is not consistent across systems (Bianchi et al., 2000). In the modern quest for the 
tools necessary to an ecosystem approach to fisheries management, the slope of the size 
spectrum is hence scrutinised as a potential indicator of the impact of fishing on fish 
communities. 

It makes sense that in most fisheries, exploitation will selectively remove large fish; 
consequently, there will be less large fish compared to the amount of small fish; hence the 
slope of the size spectrum should be steeper under exploitation. This effect might be 
enhanced if small fish benefit from the removal of large fish by being relaxed from predation. 
This is a general and qualitative prediction. Whether we can make a quantitative prediction is 
the subject of this paper. The first step is to have a quantitative model of the size spectrum: 
several such models have been developed in the past and they are briefly reviewed in section 
2. Then a recently developed model with less restrictive assumptions is presented in section 
3, and the predicted effects of fishing on it are reported in section 4. The predictable effects of 
fishing on size spectra are discussed in section 5. 

2. Review of existing theories 

2.1. Purely size-based models 

In these size-based models, the rates ρ of processes like growth, assimilation, respiration or 
production are assumed to be allometric, ie, related to size (eg weight w) by ρ=αwβ. Below we 
call β the allometric exponent. 

2.1.1. Discrete models 

A number of models considering discrete trophic levels have been developed. The first of 
these studies (Kerr, 1974) proved that the biomasses in two adjacent trophic levels will be in 
constant proportion if growth and metabolism rates respond similarly (allometrically) to 
changes in body size when averaged over entire trophic levels. If this constancy holds over the 
whole community, and if the ratio of sizes between adjacent trophic levels is constant, then 
biomass spectra will be linear on a log scale. Further developments considered additional 
processes such as production, respiration, predation and even reproduction and came to 
similar conclusions (Borgman, 1982; Borgman, 1983; Thiebaux and Dickie, 1992; Thiebaux 
and Dickie, 1993). Moreover, the "multispectrum" theory was developed by Dickie et al 
(1987;  see also Boudreau et al., 1991). They assumed discrete jumps of energy between 
relatively fixed size ranges of prey and predator, resulting in a secondary structure of the 
body size spectrum consisting of a series of stationary biomass domes periodically spaced. 
The data from several ecosystems verify this theory (see review of theory and data in Kerr 
and Dickie, 2001). 

2.1.2. A generalised growth function 

A first continuous biomass flow model was developed by Platt and Denman (1978;  see also 
Silvert and Platt, 1978). In this model, energy flows through the ecosystem at a rate that 
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depends only on the size of the particles; it includes two allometric processes: loss (mainly by 
respiration), and a "generalised growth function", which implicitly includes predation. If the 
difference between the allometric exponents of these two processes is 1, then a linear biomass 
spectrum will be stationary. This model is the only size-based model where the biomass flow 
is continuous instead of jumping from the prey- to the predator- size class. Using this model 
to predict the impact of fishing on a fish community makes sense: most published fish size 
spectra hardly encompass more than two trophic levels, hence growth underlies the biomass 
flow in these communities at least as much as predation does. In an unpublished study 
(Rochet et al., 1999), we simulated size spectra using this model and a realistic size-
dependent fishing mortality (see section 4.2 below); we found that fishing creates a curvature 
downwards in the size spectrum, which increases with increasing fishing pressure. 

2.1.3. Predation, growth and mortality 

Silvert and Platt (1980) unified size-based theories of size spectra by developing a general 
equation for energy flow based on the amount of energy within discrete trophic levels. Some 
processes can fit into a continuous form of this general equation (see below). The model by 
Platt and Denman (1978) above is a particular case of this equation where growth is 
independent of the available biomass. On the other hand, if predation depends on the 
biomass of prey and generates both death of the prey and growth of the predator, assuming a 
fixed prey-predator size ratio results in a linear stationary biomass size spectrum. The 
present study will relax the latter assumption and show that linear size spectra can occur for 
any distribution of the prey-predator size ratio. 

2.2. Other models 

Several models assuming that processes based on size and other characteristics (eg, 
taxonomic) underlie size spectra have been developed. 

2.2.1. MSVPA 

Gislason and Rice (1998) were not seeking a theory for the size spectrum but rather trying to 
predict the impact of fishing on it. They used a Multi Species Virtual Population Analysis 
(MSVPA) model, where predation is both species- and age- (hence indirectly size-) based. 
MSVPA describes the age-structured dynamics of commercial species, assuming constant 
suitability functions of prey age-groups to predator age-groups; the less well known 
remainder of the food web is fixed. Gislason and Rice simulated quasi-linear size spectra 
under various fishing intensities, and found that the change in slope of the size spectrum in 
the North Sea would be proportional to the change in fishing intensity. 

2.2.2. Simulation models (IBM…) 

Shin and Cury (in press) developed a multispecies individual-based model where predation is 
a size-based opportunistic process. In this model predation is size-based only but the 
diversity in growth and life history parameters is fully accounted for. Simulated stationary 
size spectra are concave downwards, with oscillations in large sizes. Simulations show that 
fishing impacts the slope of the size spectrum if it is summarised by a linear equation, and its 
curvature if it is assumed quadratic. 

3. A new size-based model 

3.1. Assumptions 

More details are to be found in Benoît and Rochet (In press). The fundamental independent 
variables are time t and x, the (natural) logarithm of the weight w of a fish. We focus on 
u(x,t), the distribution of the number of fish with respect to x. The mass of a fish is w=ex, 
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hence the biomass of all fish in the weight range [w1,w2] is given by 
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3.1.2. Predation, mortality and growth 

Each predation event implies two individuals: the predator (weight ey) will grow, the prey 
(weight ex) will die. The volume searched is assumed to be an allometric function of weight: 
Aeαydt (Ware, 1978), hence the number of encounters with potential preys of weight in 
[ex,ex+dx] is Aeαyu(x,t)dtdx . When two individuals meet, the probability that a predation 
happens is given by a function ϕ that depends only on the ratio of the weights eq=ey-x. We do 
not assume a particular shape for ϕ, it just has to be positive and dome-shaped. The 
distribution of predation events is given by ( ) ( ) ( )dxdydttyutxuxyAe y ,,−ϕα . 

From the point of view of the prey, this gives the mortality rate by predation: 
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If the biomass ingested is used to grow with a constant efficiency K, the growth rate of the 
predator is 
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Combining equations (1), (2) and (3), and allowing for an allometric non-predation density-
dependent mortality rate µ0eαxu(x,t), we obtain the model 
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3.2. Predictions 

3.2.1. Stationary solution 

Lemma There exists a unique real λ such that for any u0, the function  is a 

solution of equation (4). This λ is the unique real solution of 
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Moreover, λ<−α/2  (see proof in Benoît and Rochet, In press). 
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3.2.2. Sensitivity analysis 

The slope λ of the stationary size spectrum was computed from equation (5) for a variety of 
published parameters (Table 1). The slope of the size spectrum is not sensitive to individual 
variations in the parameters, especially the width of the predator-prey size ratio distribution. 
Predators eating larger preys, searching in volumes increasing steeper with size, and having a 
lower growth efficiency result in steeper spectra than the opposite settings. A higher non 
predation mortality rate also results in a steeper slope. Keeping all but one of the parameters 
to their reference value results in slopes of approximately −1, which is consistent with 
published data: 
• slopes of log numbers versus log length class ranging from −4 to −10 for weakly to heavily 

exploited fish communities (Anonymous, 1996; Rice and Gislason, 1996; Bianchi et al., 
2000). Indeed, assuming that body weight w is related to body length L by w∝L3, the 
slope λ of the density of fish with respect to log weight is related to the slope σ of the log 
density of fish with respect to length by 3λ = σ +1. 

• the slope of log biomass density versus log body mass in various aquatic ecosystems 
being very close to 0 (Boudreau and Dickie, 1992). 

• the slope of normalized biomass spectra (log biomass per range of weight classes versus 
log weight) being close to −1 or steeper in various plankton communities as well as in 
benthic fish assemblages in the Benguela System (Macpherson and Gordoa, 1996; Zhou 
and Huntley, 1997). 

Simultaneous changes in the parameters result in wider variations in the slope. However, 
combining extreme values of all parameters still results in consistently slowly decaying size 
spectra. 

Table 1: Values of the parameters used in the simulations below, and sensitivity of the slope 
of the stationary size spectrum to these parameters. 

Parameter n 0qe  α K µ0 λ 

Definition Inverse width 
of pred/prey 

size ratio 
distribution 

Mode of 
pred/prey size 

ratio 

Exponent of w 
in vol. 

searched 

Growth 
efficiency 

Non-
predation 

mortality rate 

Slope of the 
stationary size 

spectrum 

Sources C, D C, D, V, W W B, P, W (1)  
Baseline 
values 

5 100 0.82 0.2 80 -1.050 

10 100 0.82 0.2 80 -1.059 
1 100 0.82 0.2 80 -1.012 
5 1000 0.82 0.2 80 -1.011 
5 10 0.82 0.2 80 -1.157 
5 100 0.6 0.2 80 -0.956 
5 100 0.9 0.2 80 -1.085 
5 100 0.82 0.1 80 -1.110 
5 100 0.82 0.6 80 -0.956 
5 100 0.82 0.2 0 -1.044 
5 100 0.82 0.2 200 -1.059 

10 10 0.9 0.1 200 -1.371 

 
 
 
 
Sensitivity 
analysis 
of 
λ 

10 1000 0.6 0.6 0 -0.838 

Sources for the estimations: B (Buckel et al., 1995), C (Cohen et al., 1993), D (Daan, 1973), P 
(Paloheimo and Dickie, 1966), V (Vignes, 1998), W (Ware, 1978). 

(1) µ0 was set such that the non-predation mortality rate for a 500 g fish be 0.2, an 
assumption in the range of residual mortality rates usually assumed in multispecies models 
e.g. for the North Sea and Baltic Sea (0.1-0.2) (Andersen and Ursin, 1977; Gislason and 
Helgason, 1985; Gislason, 1999; Anonymous, 2002). 
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4. Results: simulations and the effects of fishing 

4.1. Effects of various "natural" perturbations 

Size spectra were simulated using C++ on a Personal Computer with an order 4 Runge-Kutta 
method and log weight x discretised by an elementary method. The process parameters were 
selected in Table 1. A first series of simulations was run to check that the results conform to 
the theoretical expectations. Linear spectra u0eλx were found to be stationary. When the 
initial spectrum is perturbed by a sine function around the stationary slope, the peaks move 
downwards the spectrum and are rapidly damped, especially in small sizes (Figure 1). On the 
other hand, if the plankton input to the spectrum oscillates in time following a sine function, 
the oscillations expand while propagating through the spectrum (Figure 2), and may result in 
infinite values if their amplitude is too large. 

 

Figure 1: Simulated size 
spectrum using baseline 
parameters from Table 1, and 
an oscillatory initial spectrum. 
Dashed line: initial conditions. 
Grey bold line: stationary 
solution. The model solution for 
successive time steps is plotted 
with a grey shading from white 
(1st time step) to black (last 
time step). 

 

 

 

Figure 2: Simulated size 
spectrum using baseline 
parameters from Table 1, and 
an oscillatory plankton input. 

4.2. Effects of fishing 

We simulated exploitation by adding a size-dependent fishing mortality rate 
( ) ( )( bxatxf )−= ,0max,µ  which is a linearly increasing function of log weight with 

recruitment to fishing at weight eb. The parameters a and b were estimated by linear 
regression of the fishing mortality rate F at age versus log weight at age, combining all stocks 
assessed by the ICES Stock Assessment Working Groups in the North Sea and Bay of Biscay 

(Anonymous, 2000b; Anonymous, 2000a). The resulting estimates ( ( )10lnˆ,1.0ˆ 1 == − bya ) 
were not found to differ significantly between the two ecosystems. 

A strong fishing mortality starting at weight 1 g causes a change in slope for weights larger 
than 10 kg (Figure 3). However, a more realistic fishing mortality as estimated from real 
fisheries has no apparent effect on the slope of the spectrum, but rather on its curvature 
(Figure 4). This effect is not larger than the oscillations created by perturbations added to the 
model, which have a fairly large amplitude (Figure 5). 
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Figure 3: Simulated size 
spectrum using baseline 
parameters from Table 1, and a 
strong fishing mortality 
(a ). ( )1ln,5.0 1 == − by

 

 

Figure 4: Simulated size 
spectrum using baseline 
parameters from Table 1, an 
oscillatory plankton input, 
oscillatory initial condition, and 
a realistic fishing mortality 

(a ). (10lnˆ,1.0ˆ 1 == − by )

 

 

 

Figure 5: Same as Figure 4, 
focused on a fish-like size 
range. 

5. Discussion 

Generally, all studies reviewed here confirm the qualitative prediction about size spectra: 
fishing will make them steeper. A closer scrutiny reveals two types of quantitative 
predictions. 

Purely size-based models' first purpose was to find the necessary conditions for the size 
spectrum to be regular, and, more specifically, linear. This can be met, assuming appropriate 
regularities in the processes that govern the flow of biomass up the food web. The progress 
from the initial models (Kerr, 1974; Platt and Denman, 1978) until the one presented here 
(Benoît and Rochet, In press) has been the continuous improvement of the realism of the 
assumptions. However, these assumptions remain quite general and extreme. Even if there is 
now a general agreement that predation in the marine environment is mainly opportunistic 
and that prey choice is guided by size and availability more than anything else, assuming that 
it is purely size-based is somewhat of a caricature. Moreover, assuming that the width of prey 
distribution is independent of predator size, that allometric exponents are similar for 
predation and non-predation mortalities and hold from plankton to whales are 
oversimplifying assumptions. However, these models help understand why size spectra might 
be regular. Given this regularity, simulating the effect of fishing gives consistent results for 
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continuous models: in a perfectly size-based world, exploitation would make size spectra 
curved instead of linear; fishing would decrease the linearity of size spectra. 

On the other hand, more realistic models were developed with the objective of examining the 
effect of fishing on fish size spectra. In these models, predation or at least life history 
characteristics are not purely size-based but also include taxonomic differences. The 
exploitation-free size spectra simulated by these models are not exactly linear, but curved 
downwards, and may include oscillations. The predicted effect of fishing is to affect size 
spectra slope, if one is willing to see the spectrum as linear. However, this is less clear if the 
spectrum is assumed curvilinear, and fishing might well affect the curvature rather than the 
slope of the spectrum 

The results of both types of models are thus consistent: in a perfectly size-based undisturbed 
world, size-spectra would be linear. Adding any kind of perturbation or diversity (ie, adding 
more realism) decreases their linearity and regularity. Among these perturbations, fishing is 
no exception. This is the reason why using size spectra slopes for monitoring fishing impacts 
is not necessarily a good idea: increased perturbation (fishing or other) will decrease the 
appropriateness of the linear model necessary to estimate the slope, hence will decrease the 
quality of the slope estimate. 
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