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1. Abstract 

 The purpose of this paper is to review some recent work on five key challenges in 

fisheries science and management: (1) dealing with pervasive uncertainties and risks, (2) 

estimating probabilities of occurrence for uncertain quantities, (3) coping with time-varying 

parameters, (4) evaluating performance of proposed management actions, (5) and 

communicating about technical issues.  Many of these challenges are exacerbated in fisheries 

that harvest multiple stocks. Various methods provide partial solutions to these challenges: (1) 

Risk assessments and decision analyses take uncertainties into account by permitting several 
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alternative hypotheses or assumptions to be considered at once. (2) Hierarchical models 

applied to multi-stock data sets can improve estimates of probability distributions for model 

parameters compared with single-stock analyses. (3) Kalman filters can improve tracking of 

temporally changing productivity of fish stocks resulting from factors such as climatic change. 

(4) Operating models of complete fishery systems provide comprehensive platforms for 

testing management procedures. (5) Finally, results from research in other disciplines such as 

cognitive psychology can facilitate better communication about uncertainties and risks among 

scientists, managers, and stakeholders.  

 

Key words: Bayesian analysis, decision analysis, hierarchical models, Kalman filter, operating 

models, risk assessment, risk communication, uncertainty 

 

2. Introduction 

 Fisheries scientists and managers face significant challenges on several fronts. 

Uncertainties are pervasive due to natural variability in components of aquatic ecosystems, 

imperfect information about those components, and lack of perfect control over fisheries. It is 

also difficult to estimate probabilities on the uncertain elements of stock assessments. 

Furthermore, climatic variability and change are potential sources of large alterations in 

productivity of fish stocks that must be taken into account when evaluating proposed 

management actions. Fisheries scientists who provide advice to managers also face the task of 

taking into account uncertainties and risks in their analyses and then communicating the 

complex and technical results effectively to decision makers and the public. Some key 

challenges facing fisheries managers and scientists include (1) dealing with pervasive 
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uncertainties and the resulting risks, (2) estimating probabilities for those uncertain quantities, 

(3) recognizing and dealing with changes in parameters over time, (4) comprehensively 

evaluating management options while taking major sources of uncertainty into account, and 

(5) and communicating the essence of such elaborate analyses to interested parties.  

 These challenges apply to most fisheries situations, but they are amplified where a 

single stock is harvested sequentially by different fisheries or where multiple stocks are 

harvested in one fishery (multi-stock fisheries). Methods for responding to these challenges 

are widely applicable, and are not restricted to multi-stock situations. In some cases, multi-

stock situations can provide opportunities for solutions to certain challenges. 

 This paper has two purposes.  First, it elaborates on the above challenges facing fisheries 

scientists and managers. Second, the paper describes some potential solutions to each 

challenge by reviewing some recent research. Although most examples here are from Pacific 

salmon (Oncorhynchus spp.) fisheries, many of the lessons learned are applicable to other 

species. 

 

3. Challenges and some possible solutions 

3.1 Challenge #1 - Uncertainties and risks are pervasive 

 To put the challenges facing fisheries scientists and managers into context, consider a 

typical fishery system (Figure 1), wherein the natural aquatic system is sampled by scientists 

and harvesters and the resulting data are used by stock assessment scientists to estimate 

abundance, productivity, recruitment, and other attributes of a stock. Scientists also estimate 

how several potential management actions, such as various harvest rates or enhancement 

activities, might affect indicators of outcomes. Scientists provide stock assessment advice to 
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fisheries managers and interested parties (stakeholders), ideally with some iterative feedback. 

Managers then consider their management objectives along with input from stock assessment 

scientists and stakeholders before recommending a particular action such as a harvest rate, 

which then affects the natural system (Figure 1).      

 There are numerous sources of uncertainty (ellipses in Figure 1) in such fishery systems; 

five are: (1) natural variability across space and time in distribution, abundance, and 

productivity of fish populations, (2) observation error (i.e. imperfect information), which 

arises from measurement error as well as sampling error (Mace and Sissenwine, 2002), (3) 

difficulty with communication among scientists, managers, and stakeholders about technical 

scientific information and its associated uncertainties, (4) unclear management objectives, and 

(5) implementation error, which is the difference between a management goal and the actual 

realized state of spawning stock biomass or fishing mortality rate, for instance.  

 These uncertainties can be large and affect interpretation of data, results of analyses, 

rank orders of management options, and effectiveness of those options. They are important 

because they create risks -- biological risks for fish populations, economic losses for those in 

the fishing industry, and social disruptions for people in fishing-dependent communities. 

Uncertainties are pervasive; they occur in all fishery systems to varying degrees. Therefore, 

most decisions in fisheries management should take uncertainties into account.  This applies 

to decisions not only on harvest regulations but also on activities such as ocean ranching and 

other attempts to increase abundance of fish stocks.  

 

3.2 Potential solutions to challenge #1 

 3.2.1 Stock assessments can account for uncertainties 
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 The challenge of pervasive uncertainties has been met by increasingly sophisticated 

technical tools in fish stock assessments.  It is no longer widely acceptable to provide 

scientific advice to managers on possible consequences of management actions based only on 

best-fit, or point, estimates of current stock biomass and productivity parameters of stocks, for 

example. Stock assessments in many regions now routinely take several sources of 

uncertainties into account quantitatively (National Research Council (NRC), 1998; Quinn and 

Deriso, 1999).  This includes the International Council for the Exploration of the Sea (ICES) 

region, where growing emphasis on conservation concerns and application of the 

precautionary approach (FAO 1995) has led to many analyses to estimate probabilities that 

stock indicators will cross reference points (Lassen and Sparholt 2000). Furthermore, the 

European Commission is actively encouraging policy-oriented research that takes 

uncertainties into account and applies risk assessment. In addition, various forms of risk 

assessment and decision analysis have been found particularly useful in certain situations for 

evaluating a broad range of management options in the context of uncertainties (Francis and 

Shotton 1997; McAllister et al. 1999).  

 

 3.2.2 Risk analysis 

 Risk analysis (i.e. risk assessment) includes four components. (1) At its core is a 

stochastic model of system processes that considers a wide range of quantified hypotheses 

about those processes, i.e. different parameter values or structural forms of relationships 

among variables. (2) Uncertainties are taken into account by weighting these alternative 

hypotheses by the degree of belief in them or the probability of their occurrence. (3) Indicators 

of uncertain outcomes are then derived from management objectives. (4) The model then 
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estimates the probability distribution of these indicators for each of the proposed management 

actions.  

 Risk assessment methods for ecological systems were derived in the early 1990s from 

human health risk assessment techniques, which were designed to estimate health risks from 

toxic chemicals (NRC, 1993). Although there are obvious parallels in these two fields of risk 

assessment, there is one crucial difference.  In assessment of risks to human health, the 

mortality rate was widely agreed upon as the most important indicator for determining the 

adequacy of regulatory policies.  A standardized set of human health risk assessment 

procedures emerged (NRC, 1983).  In contrast, in resource management, including fisheries, 

there are many indicators of interest, and some, such as biodiversity, are hard to quantify.  

Partly for this reason, no standardized risk assessment procedures have been developed for 

ecological systems, although various general frameworks have been used in several countries 

(Power and McCarty, 2002). An important point here is that assessment of risks in ecological 

systems is a relatively new field (NRC, 1993); methods are continually evolving, as can be 

seen in issues of journals such as Risk Analysis and Human and Ecological Risk Assessment. 

 Fisheries scientists, managers, and stakeholders should always carefully state what they 

mean when using the term "risk" to avoid misunderstandings.  "Risk" has different meanings 

to different people. For example, a frequently used indicator of risk in the ICES region is the 

probability that a stock's biomass will drop below the biomass limit reference point, Blim. 

Alternatively, members of the fishing industry are often more directly concerned with 

reductions in their harvest and revenue. Conservation groups might be worried about shifts in 

community structure as a result of harvesting certain species too heavily. Fisheries managers 

usually consider all of these indicators and more, while making difficult tradeoff decisions 
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(the risk management step, discussed below). In any case, it is often appropriate to consider 

both components of risk, the probability of various events occurring, as well as the magnitude 

of each of those events' outcomes.  

 

 3.2.3 Decision analysis 

 Risk analyses should be taken further. It is not sufficient for decision makers to merely 

see a description and quantification of uncertainties and risks. Decision makers ultimately 

want to know how the uncertainties and risks affect the ability of each potential management 

option to meet a particular management objective (which may composed of several 

component sub-objectives). To provide this information, scientists often conduct decision 

analyses (Clemen, 1996; Peterman and Anderson, 1999), which add four new components to 

the four already mentioned for risk assessment: (5) one or more management objectives, (6) a 

decision tree or decision table to help structure the analysis and communicate its content, (7) a 

ranking of management options that results from conducting the decision analysis, and (8) 

extensive sensitivity analyses of effects of changes in various assumptions on that rank order 

of management options. In this context, risk assessment procedures can be thought of as a 

subset of the decision analysis approach (Figure 2). One fundamental difference between risk 

assessment and decision analysis is that the latter method focuses on how uncertainties affect 

the rank order of management options, given a management objective. Decision makers also 

benefit from sensitivity analyses that illustrate how that rank order changes for different 

management objectives. 

 Before giving a detailed example of decision analysis, I review several benefits of 

decision analysis over standard approaches to decision making. First, by taking uncertainties 
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into account explicitly, decision analysis often indicates that a management option that will 

best meet an objective will be different than the one recommended by a simpler analysis based 

only on point estimates of parameters and state variables, i.e. ignoring uncertainties 

(Reckhow, 1994; Frederick and Peterman, 1995).  For example, Robb and Peterman (1998) 

found that the abundance estimate for the Nass River (British Columbia, Canada) sockeye 

salmon (O. nerka) population that was optimal for opening an upstream First Nations fishery 

was 40,000 fish when only the point estimates of model components were used. In contrast, 

when a decision analysis was conducted that took into account uncertainty in both the 

structural form of the stock-recruitment relation as well as its parameters, that optimal 

abundance tripled to 120,000.  The main reason for a decision-analysis result being different 

from the deterministic analysis is that in fisheries systems, losses associated with deviating 

from an optimal state are usually asymmetric (e.g. loss in long-term value of the catch is 

higher for a spawning biomass that is 50% below some desired level than for one that is 50% 

above). Similarly, probability distributions for uncertain quantities are often asymmetric. 

Given either of these conditions, it usually becomes optimal to choose an action that "hedges" 

away from the higher potential losses (Reckhow, 1994). When decision makers consider 

political, economic, and social pressures, the final recommended action may or may not still 

hedge in this direction.  

 A second benefit of decision analysis is that it can include various structural forms of 

models as alternative hypotheses in a single analysis. This is important because mis-

specification of a model's components (compared to the real-world situation) may produce 

inaccurate estimates of outcomes, yet we usually do not know the correct specification of the 

model. A significant point is that decision analysis does not require scientists, stakeholders, or 
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others to agree on which single model should be used in analyses of management options.  

Instead, several alternative models can be included. Analysts then have the difficult tasks of 

choosing which alternative models are legitimate and necessary to include, and assigning a 

probability to each model. These are complex topics beyond the scope of this paper, but Punt 

and Hilborn (1997) and McAllister and Kirchner (2002) provide excellent advice. 

 Third, decision analysis has been applied extensively in several fields, including applied 

ecology (Dorazio and Johnson, 2003) and fisheries management (Punt and Hilborn, 1997). It 

has provided valuable insights into complex decision problems.   

 Perhaps the most extensive example of a decision analysis in fisheries management is 

the recent evaluation of recovery plans for seven depleted spring and summer chinook salmon 

(O. tshawytshca) populations from the Snake River sub-basin of the Columbia River system in 

the Northwestern United States, which were listed under the U.S. Endangered Species Act 

(Peters and Marmorek, 2001).  Adult and juvenile fish migrate through several reservoirs and 

dam systems, and also face problems from nearby agricultural lands, harvesting, predation, 

and changing of ocean conditions.  Large uncertainties about the various factors that 

contributed to the decline in abundance of these stocks over the past several decades led to 

contentious debates about interpretations of data (Marmorek and Peters, 2001).  A decision 

analysis framework included many of these hypotheses in one analysis along with 

uncertainties in them (Peters and Marmorek, 2001).   

 The decision analysis was aimed at identifying acceptable recovery options to be 

implemented by the U.S. National Marine Fisheries Service. One example of a quantitative 

management objective (the "recovery" objective) was to find a management action such that 6 

out of the 7 Snake River stocks would exceed their respective desired target spawner 
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abundances in at least 50% of the last 8 years of 48-year Monte Carlo simulations (Peters and 

Marmorek, 2001). Other management objectives considered by participants in this analysis 

had a similar format. This approach of using the top 6 of 7 stocks was designed to ensure that 

the best-off stocks met the objective, while recognizing that there is some non-zero probability 

that the recommended action will not be successful for all stocks. This approach to structuring 

a multi-stock management objective may be useful elsewhere.  

 A decision tree reflected many complexities of the Snake River chinook salmon problem 

(Figure 3).  These dealt largely with uncertainties in the data and hypotheses about 

mechanisms operating during downstream freshwater migration by juveniles, as well as 

delayed mortality effects in the ocean. These uncertainties and hypotheses were described by 

stochastic simulation models.  A wide range of weightings for alternative hypotheses were 

evaluated and one of the management options (A3), removing the lower four Snake River 

dams, was the highest-ranked and most robust option after extensive sensitivity analyses 

(Peters and Marmorek, 2001).  It met the management objective stated above with the highest 

probability under the widest range of assumptions.  

 This example of the endangered Snake River chinook salmon also illustrates that 

decision analysis is a useful framework for focusing efforts of members of a diverse multi-

stakeholder team and taking their various hypotheses and uncertainties into account 

(Marmorek and Peters 2001).  Normally, decision analyses can also simultaneously include 

economic or other indicators to provide information for decision-makers who must make 

difficult tradeoffs. Unfortunately, for bureaucratic and jurisdictional reasons in this Snake 

River salmon problem, economic indicators of the effects of various management options 

were estimated by a separate group and were not part of this formal decision analysis. Even 
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so, evaluations of the effect of uncertainties in biological and physical processes on 

performance of the management options were more thorough than would have been the case 

without a decision analysis.  

 Three recent examples of application of decision analysis illustrate the benefits of this 

method; the first two apply to problems in the ICES region. Kuikka et al. (1999) explored how 

environmental uncertainties affect recruitment and growth in Baltic cod and the optimal mesh 

size for managing that fishery.  That decision analysis demonstrated that increased mesh size 

would reduce the probability of a stock collapse and also meet other management objectives.  

This decision analysis approach for Baltic cod has been accepted formally within the ICES 

region as a basis for scientific advice to managers for this stock.  Another decision analysis on 

Baltic cod also showed that a reduced fishing mortality rate is necessary to substantially 

reduce the probability of stock collapse; this result was robust to various assumptions about 

the structure of the model (Jonzén et al., 2002).  Finally, Punt et al. (2002) successfully used 

decision analysis to extensively evaluate harvesting options for Australia's multi-stock, multi-

species South East Fishery. 

 Thus, risk assessment and decision analysis are useful tools for dealing systematically 

with some of the uncertainties and risks facing fisheries scientists and managers. Alternative 

hypotheses can be incorporated into a single analysis, numerous uncertainties can be taken 

into account explicitly, and the rank order of management options can be identified under a 

variety of assumptions through sensitivity analyses. Despite these benefits, annual stock 

assessments typically consider only some elements of complete risk assessments and decision 

analyses. It would be impractical to go through complete analyses each year when only small 

changes in stock status or management options are expected; annual stock assessments already 
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consume considerable time and effort. Instead, comprehensive risk assessments and decision 

analyses are especially useful when developing pre-agreed-upon general management 

procedures that are intended to be in place for a considerable period before being re-evaluated 

(McAllister et al. 1999).  This topic is expanded upon below under challenge #4.  

 

 3.2.4 Risk management 

 Risk management is the process in which decision makers "manage the risks" by 

choosing a particular action, or set of actions, after taking into account the scientific advice 

generated by the risk assessment, decision analysis, and stock assessment, as well as other 

factors not considered explicitly in those analyses (Figure 2). Because of this last point, risk 

management is not a purely scientific process. Management objectives usually include diverse 

components that lead to compromises or tradeoffs. For instance, a common three-part 

objective in fisheries management is to obtain an acceptably low probability that a fish stock 

will fall below a biomass limit reference point, while maintaining the cumulative harvest 

above some desired level and minimizing year-to-year variation in catch. Usually, all three 

indicators cannot be optimized at once, so tradeoffs are required. The relative weighting put 

on different components of an objective by decision makers is situation-dependent; there is no 

scientifically "correct" way to weight those components.  Scientists can provide crucial 

advice, though, by indicating how much of one indicator will be lost for a given gain in 

another under each of a wide variety of possible management options.  

 Clear communication is critical at the risk management step. To improve the efficiency 

and effectiveness of decision-making, and to ensure that all the scientific information is 

understood, there should be an iterative, two-way flow of information among people 
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responsible for the steps of risk analysis, decision analysis, and risk management (Figure 2), 

as well as the stakeholders. This is not intended to be a linear, single-pass-through procedure 

(Morgan and Henrion, 1990, p. 40). Furthermore, scientists should provide scientific advice in 

a format that is readily understandable by others (a topic covered below under challenge #5).     

 

3.3 Challenge #2 - Estimating probabilities for uncertain quantities 

 Another challenge for fisheries scientists is to estimate uncertainties for components of 

analyses such as those described in the decision analysis above.  We can (1) directly calculate 

the probability from a lengthy data set, such as annual water levels in a river, (2) use 

judgments of experts, or (3) use the data available along with Bayesian methods to produce a 

posterior probability distribution describing the degree of belief in the uncertain components 

(Ellison, 1996; Punt and Hilborn, 1997).  All three approaches face challenges.  The first 

option is not commonly used because lengthy data series for uncertain components are rare in 

fisheries.  The second option, seeking opinions from experts, is used widely. However, such 

elicitations of expert judgments are well known by cognitive psychologists to be subject to 

bias and incorrect estimates of precision due to many factors (Morgan and Henrion, 1990, p. 

102). For instance, asking a group of experts to provide an estimate of a parameter somewhere 

within a designated range tends to produce a different distribution than if the question is 

completely open-ended, without a suggested plausible range.  Furthermore, if a question is 

ambiguous concerning the exact quantity about which an opinion is being sought, each expert 

in a group might think about a different location, season, life stage, etc. when giving an 

opinion. This would make the distribution wider than it should be and might also bias it. An 

unambiguous question will ensure that experts' responses reflect only uncertainty about the 
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parameter's value, rather than uncertainty about which entity the parameter represents 

(Morgan and Henrion's 1990 "clarity test", p. 50).  

 The third option for describing uncertainties in stock assessments, namely using the 

available data in conjunction with Bayesian statistical methods, is increasingly common, but it 

is far from widespread (NRC, 1998). A prior probability distribution can be combined with 

the likelihood distribution derived from the data and the resulting posterior probability 

distribution can quantify the degree of belief in different values of some parameter, for 

example. Such posterior probabilities can then be used in a risk analysis and decision analysis 

to weight the various hypotheses about the parameter's value. For complex fish stock 

assessment models that have numerous uncertain parameters, computationally intensive 

methods such as Markov Chain Monte Carlo (MCMC) methods (Gelman et al., 1995) or 

sampling-importance-sampling (SIR) algorithms (Rubin, 1988) can estimate joint and 

marginal posterior probability distributions.  MCMC methods are becoming easier to 

implement with new software (e.g. WinBUGS, Spiegelhalter et al., 1999).  

 One major challenge about this third, or Bayesian, option for describing uncertainties is 

deriving defensible prior probability distributions. When data are not very informative about a 

parameter due to too few data points, low contrast, or large natural variability and observation 

error, for example, the shape of the posterior probability distribution is greatly affected by the 

choice of the prior probability distribution (Ellison, 1996). This can have important 

management implications. If the resulting posterior probability distribution is too narrow, for 

instance, it may underestimate the probability of extreme cases that lead to deleterious 

conservation outcomes. This general problem is acute for relatively unproductive stocks that 

are a conservation concern (Rivot et al., 2001); such stocks typically have relatively few data 
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and there is a potentially high cost of incorrectly estimating the probability of decline or 

recovery of a stock. For this reason, some researchers argue that, given relatively 

uninformative data, it is most appropriate to use an uninformative prior probability 

distribution to avoid biasing the posterior (Walters and Ludwig, 1994; Punt and Hilborn, 

1997). Others argue to use independent biological information where it is available to create 

an informative prior (McAllister et al. 1994, 2001).  

 

3.4 Potential solutions to challenge #2 

 Hierarchical models are a quantitative tool that can help deal with this issue and produce 

defensible informative priors through using large sets of data on multiple populations. Rather 

than assuming that each population's parameter values are statistically independent from those 

of other populations, hierarchical models allow for some underlying structure or pattern in 

parameters. For instance, all stocks of a given species might be assumed to have a maximum 

reproductive rate that is drawn from the same normal probability distribution, with a single 

mean and variance (e.g. Myers et al., 1999).  Such models are hierarchical in the sense that 

each population's value of some uncertain parameter, such as the 'a' parameter of the Ricker 

stock-recruitment model, represents a sample from a distribution that is described by unknown 

parameters, which must also be estimated. Hierarchical models include mixed-effects models 

(fixed and random effects) estimated by classical or Bayesian methods.  Such models have 

proven very useful for combining information across multiple populations of the same or 

similar species, as well as across species, or across years (Myers et al., 1997, 1999, 2001; 

Liermann and Hilborn, 1997; Myers, 2001; Su et al., 2001; Adkison and Su, 2001; Chen and 

Holtby, 2002; Mueter et al., 2002a). These analyses have identified consistent and limited 
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ranges of values for certain parameters across groups of populations, such as maximum annual 

reproductive rates across species worldwide (Myers et al., 1999) and a narrow range of 

coefficients reflecting effects of summer sea-surface temperature on survival rates of Pacific 

salmon populations (Mueter et al., 2002a).  In the absence of other information, these types of 

results are useful either for establishing prior probability distributions for such parameters to 

be used in Bayesian updating or for specifying directly the posterior probability distributions 

or weightings to be used in decision analyses.  

 An example of applying a hierarchical Bayesian model (HBM) to pink salmon (O. 

gorbuscha) in the Northeastern Pacific Ocean demonstrates an additional benefit of this type 

of analysis: reduced uncertainty in parameter estimates of stock assessment models and 

improved advice to managers.  A frequent challenge in parameter estimation is that natural 

environmental variation tends to mask underlying patterns in data.  To the extent that multiple 

stocks share common environmental situations, they should show similar responses to 

environmental variation. Hierarchical models can attribute some of the observed variation to 

such common responses, thereby permitting better estimates of model parameters.  To 

understand the following application of a hierarchical model to pink salmon, some further 

background is essential.   

 In previous work, we found that some of the 43 pink salmon stocks in the Northeastern 

Pacific Ocean showed positive covariation in their residuals from their stock-specific best-fit 

Ricker stock-recruitment model ("productivity") (Pyper et al., 2001). Productivity of nearby 

stocks (i.e. less than ~ 500 kms apart) was more positively correlated than between more 

distant stocks. This result is consistent with findings in a wide variety of species and locations, 

including Pacific herring (Ware and McFarlane, 1989); North Sea and North Atlantic fishes 
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(Shepherd et al., 1984), Baltic salmon (McKinnell and Karlstrom, 1999), Northeast Pacific 

sockeye and chum salmon (Peterman et al., 1998; Pyper et al., 2002; Mueter et al., 2002b), 

and numerous other marine and freshwater species (Myers et al., 1997). A consistent finding 

of most of these studies is that positive covariation in various measures persists for distances 

up to several hundred km, but as stocks become increasingly separated, the correlation 

decreases toward zero.  

 In our hierarchical Bayesian analysis of pink salmon, this positive covariation among 

stocks permitted us to treat nearby stocks as "statistical replicates" when fitting a model, 

which tended to average out observation errors across stocks (Su et al., 2003, submitted).  We 

fit a generalized Ricker model: 

 

 (1)  loge(Rit/Sit) =  ai - biSit + γiSSTit + εit,  

 

where Sit is the spawner abundance for stock i in brood year t and i = 1, ..., 43, Rit is 

the resulting recruitment, ai and bi are parameters of the basic Ricker model, γi is the 

coefficient reflecting the effect of summer sea-surface temperature (SSTit) in the 

region where each stock's juveniles spend their first four months in the ocean, and εit 

is the residual variation. We used spatially correlated prior distributions to reflect 

possible regional similarity of the stock-specific ai and γi parameters (Su et al., 2003, 

submitted). 

 We found that our multi-stock hierarchical Bayesian model gave more precise estimates 

of the ai and γi parameters than separate analyses of each stock (Figure 4) (Su et al., 2003, 

submitted). These narrower posterior probability distributions will lead to improved estimates 
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of biological reference points that are affected by these parameters because some of the 

environmentally induced variation in productivity has been better accounted for than in single-

stock analyses. Such probability distributions are also useful informative prior probability 

distributions for analyses of other pink salmon stocks, and can also be used to weight different 

combinations of parameter values in decision analyses.  

 Thus, although multi-stock situations normally create problems for scientists and 

managers (e.g. caused by simultaneous harvesting of several stocks with different 

productivities), in situations where several stocks respond similarly to some variable, 

hierarchical models can improve stock assessment information.  Hierarchical models provide 

a consistent, rigorous method for estimating informative prior probability distributions that are 

more precise for certain parameters than if populations were analyzed separately.  

Furthermore, such methods should lead to improved confidence in the stock assessment 

process by managers and stakeholders. Despite these benefits, the hierarchical modelling 

approach is not appropriate for all parameters, because quantities such as a stock's unfished 

equilibrium are likely to depend on the quality of spawning or juvenile rearing habitat, which 

can vary dramatically between even nearby stocks due to human- or naturally-induced 

differences in habitat. In addition, the hierarchical modelling approach will not be useful for 

improving models of environmental effects on fish populations in cases where the responses 

to a given environmental variable are uncorrelated among stocks.    

 

3.5 Challenge #3 - Time-varying parameters 

 Most stock assessments assume that model parameters are constant over time, along 

with the limit and target reference points calculated from them.  However, some parameters, 
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such as body growth rate and productivity, respond to changing environmental conditions.  

Such parameters should therefore instead be considered variables in models (Walters, 1987). 

For instance, there was a regime shift to a more productive ocean system in the Northeast 

Pacific in the mid-1970s, most likely due to changing atmospheric and oceanographic 

conditions. Productivities of many sockeye salmon stocks increased as a result (Adkison et al., 

1996; Peterman et al., 1998). Such changes have important management implications.  In 

periods of low productivity, proportional harvest rates should be reduced, and in periods of 

high productivity they can be increased. If stock assessment models assume that productivity 

is constant, then insufficient action may result during unproductive periods to protect stocks 

from potentially serious overfishing. Unfortunately, only the largest and most rapid changes in 

parameters are recognizable amid the noise of observation error and natural variation in 

survival and recruitment. The challenge is thus to build stock assessment models that can 

reflect temporal changes in important coefficients of model processes.  

 

3.6 Potential solutions to challenge #3 

 The most common approach to dealing with this issue is to make a quantity such as the 

natural mortality rate, M, a function of one or more variables, such as predator abundance.  

This approach is used in those few cases where appropriate data are available (e.g. multi-

species virtual population analysis in the ICES region, supported by extensive data on 

stomach samples, e.g. Rice and Gislason, 1996).  Where such data do not exist, simple 

parametric sensitivity analyses can be conducted using low, medium, and high values of the 

parameter that is considered to be a variable.  
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 The general method of state-space modelling (Chatfield, 1989) is a more comprehensive 

method for dealing with time-varying parameters though. Many scientists have used this 

approach to estimate time-varying parameters of fish stock assessment models, most 

commonly using a Kalman filter (Collie and Sissenwine, 1983; Walters, 1986; Mendelsohnn, 

1988; Pella, 1993; Schnute, 1994; Millar and Meyer, 2000).  

 A simple example illustrates how a Kalman filter model works. Based on previous 

analyses (Adkison et al., 1996; Peterman et al., 1998), we cast a Ricker (1975) stock-

recruitment model for sockeye salmon in the context of a Kalman filter to allow the Ricker a 

parameter to vary over time (Peterman et al., 2000, 2003). A Kalman filter consists of two 

parts. First is the "observation equation" (Chatfield, 1989), which in our case described the 

relationship between the two observed quantities, Rt and St: 

 

(2)   ttttte vbSaSR ++=)/(log      

 

where St is abundance of spawners in brood year t, Rt is abundance of adult recruits of all ages 

produced by those spawners, a is the mean productivity (in units of loge(R/S)) at low spawner 

abundance, and b reflects the effects of spawner abundance on productivity. This equation 

differs from the standard Ricker model in one important way: the a parameter is subscripted 

by brood year, t, to reflect changes over time in productivity. Those temporal changes are 

governed by a second stochastic process, described by the "system" or "state equation" 

(Chatfield, 1989); we assumed a random walk process: 

 

(3)   . a a wt t= +−1 t
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The error terms vt and wt in equations (2) and (3) are assumed to be normally distributed and 

independent, with variances σv2 and σw2, respectively. We termed equations (2) and (3) 

together the "Kalman filter random-walk" model. We used a simple, yet flexible, random walk 

in equation (3), rather than a particular temporal pattern, because no one knows the temporal 

changes that have occurred in the true at.  Nevertheless, as shown by the simulations in 

Peterman et al. (2000), such a Kalman filter random-walk model performs relatively well at 

tracking a wide variety of true underlying temporal trends in at, including sinusoidal patterns, 

step functions, and autoregressive processes (Figure 5). 

   Because our simulations showed that this Kalman filter random-walk method for 

estimating the Ricker a parameter had the best performance compared to other common 

parameter estimation methods (Peterman et al., 2000), we used a Kalman filter in a separate 

empirical analysis to reconstruct the best estimates of Ricker at values for the world's most 

abundant and commercially valuable sockeye salmon stocks, those in Bristol Bay, Alaska 

(Peterman et al., 2003). Most of these eight major stocks showed considerable temporal 

variation in reconstructed productivity (likely induced by oceanographic conditions) at both 

short and long time scales; three examples are given in Figure 6.  Productivity of some stocks 

increased over the 40-year period, others decreased, and yet others showed periods of both 

large increases and decreases. These temporal changes in productivity have important 

management implications. The proportional harvest rates that would have maximized the 

sustainable yield (which was the management goal in Alaska for these stocks) were quite 

different in some periods from the optimal harvest rate estimated from the standard Ricker 

model that assumed constant parameters (Figure 7).  Analyses of such stocks using a Kalman 
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filter approach may thus improve decision making by providing evidence of changing 

productivity.   

 

3.7 Challenge #4 - Evaluating performance of management options 

 Even if the challenges described above are met, scientists and managers will still be 

uncertain about which management option will best meet a given management objective, due 

to the complex feedbacks among system components.   

 

3.8 Potential solutions to challenge #4 

 Given a clearly stated objective, simulations can be done to evaluate the relative 

performance of management options before they are put into practice.  Although fisheries 

scientists routinely conduct numerous stochastic simulations, the most comprehensive method 

to evaluate options is to simulate the workings of the entire feedback system shown in Figure 

1 (not just part of it) using an "operating model" (Linhart and Zucchini, 1986). Such models 

are analogous to flight simulators; the latter include detailed dynamic feedback processes to 

help pilots determine which decision-making protocols work best to meet a given objective 

(e.g. reaching the simulated destination) in the presence of a wide range of possible, but 

uncertain, simulated contingencies. Similarly, operating models of fisheries typically simulate 

(1) the stochastic dynamics of a "true" (or assumed) natural population, (2) a process of 

sampling data from that true population, including observation error, (3) a stock assessment 

step that uses those sampled data to update annual estimates of state variables and parameters, 

(4) harvest control rules that specify the effect of estimates from the stock assessment step on 

the choice of management actions by decision-makers who have a given objective, (5) 
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implementation of those actions, and (6) the effect of those realized actions on the "true" 

population (Punt, 1992; de la Mare, 1996, 1998; Sainsbury, 1998). This process is usually 

repeated over many simulated decades in thousands of Monte Carlo trials, with indicators 

calculated to determine how well the management objective is met.  

 Normally, operating models are used to explore numerous situations and structures for 

the first four components of the system described in the paragraph above. First, a wide range 

of alternative hypotheses about scenarios for the "true" population are routinely considered in 

successive simulations.  The specific nature and form of steps 2, 3, and 4 (collectively often 

called a management procedure, de la Mare, 1996) can be varied across runs of the operating 

model to determine the best combination of sampling procedure (e.g. sampling methods and 

times/places to sample), types of models and parameter estimation methods (e.g. constant or 

time-varying parameters, maximum likelihood or Bayesian updating), and harvest control 

rules (functional forms and parameter values). The final result of applying an operating model 

is a relative ranking of management procedures based on those that are most robust to a wide 

range of conditions.  Just as with decision analysis, sensitivity analyses can be done to 

illustrate how that ranking changes with different management objectives.  

 The fifth component of an operating model mentioned above, implementation error, is 

extremely important. Implementation error is the deviation between a desired state and the 

actual realized outcome (Rosenberg and Brault, 1993; Rice and Richards, 1996).  This error 

arises from a combination of non-compliance with regulations by harvesters, changing 

catchability, other dynamic processes in the fishing fleet, natural processes such as unusual 

ocean conditions, or choice of the wrong management action to achieve a target objective. 

Implementation error can be a large source of uncertainty and variation, yet it is rarely 
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included in the exploration of management options in stock assessments. To rectify this 

situation, simulations of performance of management actions can include implementation 

error by using a stochastic harvesting process in an operating model. In certain cases, the 

magnitude and direction of implementation error can be captured by relatively simple 

stochastic relationships that reflect the net effect historically of the physical, biological, and 

human processes that create implementation error, even though the details of those processes 

are not known (Bocking and Peterman, 1988; Peterman et al., 2000). 

 Such comprehensive operating models of entire fishery systems provide a strong test of 

the robustness of management options (Cooke 1999). An excellent and early example of the 

application of operating models to evaluate management procedures was the International 

Whaling Commission's (IWC's) development of the Revised Management Procedure (RMP) 

(IWC, 1994 Annex H; de la Mare, 1996; Kirkwood, 1997). The IWC's analyses explored 

many shapes of functions for the harvest control rule in the presence of uncertainty in 

estimates of whale abundance (based on studies of errors in visual sitings).  Those analyses 

also examined model performance under numerous combinations of uncertainty in stock 

identity (in multi-stock fisheries) and temporal trends in abundance and productivity of whales 

arising from environmental change and interactions with other species. The harvest control 

rule that performed best for the whale situation was robust to these sources of uncertainty (de 

la Mare, 1996). Operating models have also been applied in many other situations (e.g. Smith, 

1993; Butterworth and Punt 1999 and the rest of that issue of the ICES Journal of Marine 

Science; Peterman et al., 2000).  The European Commission and ICES scientists are currently 

actively developing operating models for a wide variety of fisheries in the ICES region to 

derive robust management procedures (including harvest control rules) for each (e.g., Kell et 
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al. 1999).  The general conclusion from past work on this topic is that such comprehensive 

simulations of sources of uncertainties provide different recommendations to decision makers 

than if an analysis of only a subset of those uncertainties were conducted.  

 

3.9 Challenge #5 - Communication 

 Communication among scientists, managers, and stakeholders is another source of 

uncertainty or error that affects fishery systems (Figure 1). Stock assessment, risk analysis, 

and decision analysis are highly technical endeavors and it is difficult to effectively convey 

the assumptions, results, and implications to people who are not actively involved in analyses. 

Many sources of communication problems are obvious, but some are more subtle.  As an 

example of the latter, cognitive psychologists who do research on how people reason about 

uncertainties and risks have found that there can be widely different intuitive interpretations of 

such seemingly straightforward terms as "probability". Teigen (1994) found that people 

interpret "probability" in six different ways.  It can reflect the (1) chance of seeing a given 

outcome for a stochastic process (which most scientists would intend in a stock assessment 

context); (2) tendency or ease with which some event is perceived to occur (if a stock size has 

been low recently, people may perceive a higher tendency probability of its dropping 

dangerously low, even if a calculated chance probability indicates otherwise); (3) knowledge 

or awareness of the range of possible outcomes (if you are aware of only one possible 

outcome, you will assign it a high knowledge probability); (4) confidence or degree of 

subjective belief in some outcome based on one's experience, (5) control, with more 

management influence over the outcome leading to a higher perceived probability of an 

outcome occurring, or (6) plausibility of the scenario (how convincingly the case is 
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presented).  Thus, what may seem like a relatively simple concept to fisheries scientists who 

use "probability" every day may inadvertently lead to misunderstanding because a given style 

or format of presentation may trigger different probability concepts in listeners.    

 

3.10 Potential solutions to challenge #5 

 There is no simple answer to the problem of communicating technical information. It 

takes concerted effort by managers, scientists, and stakeholders through ongoing involvement 

in analyses to improve mutual understanding (e.g. Smith et al. 1999). As well, scientists could 

use more training in how to communicate technical concepts more effectively to non-technical 

audiences. For example, after extensive experiments, Gigerenzer and Hoffrage (1995) found 

that people were more likely to correctly interpret the chance probability noted above when 

results were stated in frequency format rather than as decimal probabilities.  Fisheries 

scientists should exploit this finding when presenting the probability of some outcome 

occurring under a proposed management regulation (i.e. Teigen's 1994 chance).  For instance, 

compare the following statements about the effect of a proposed fishing mortality rate:  

 

• "There is a probability of 0.2 (or a 20% chance) that the stock biomass will drop below its 

limit reference point within 5 years."   

•  "Two out of every 10 situations like this will lead to the stock biomass dropping below its 

limit reference point within 5 years."  

 

Those who work frequently with numbers know these are equivalent statements, but it has 

been shown that for most people, the second statement is less likely to cause confusion 
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because its frequency format prompts concrete thinking about sets of cases, which can be 

visualized and counted (Gigerenzer and Hoffrage, 1995). This frequency format is easier, 

more direct, and less ambiguous than thinking about the decimal probability of the low-

abundance situation. Anderson (1998) provides other examples of applying these concepts of 

frequency format to management of natural resources.  

 To extend this idea of frequency format for uncertain events to a multi-stock fishery, 

consider a case in which 5 fish stocks are vulnerable to harvest in a given area and time, but 

they differ in their limit reference points and current stock biomass relative to those reference 

points.  Say that stock assessment scientists evaluated a particular proposed management 

regulation via Monte Carlo simulation.  If they used the recommended frequency format, they 

would, for example, report that "In 3 out of 10 situations like this, any 2 of the 5 fish stock 

biomasses would drop below their limit reference points in the time period considered." 

According to the studies of Gigerenzer and Hoffrage (1995), fisheries managers and 

stakeholders would find this statement more understandable (and would act more logically 

and consistently on the information) than a statement using the more typical probability 

format, such as "There is a probability of 0.3 that 40% of the stocks would drop below their 

limit reference points in the time period considered."   

 This simple idea of using frequency format has another benefit; it may help reduce the 

confusion over the term "risk" discussed earlier. Mislabeling a probability of an undesirable 

outcome as a "risk" reflects a failure to understand the dimensions (units) of risk and its 

components.  In the concretely pictured sets produced in peoples' minds by presenting 

information about uncertainties in a frequency format, the tangled concept of risk and its 

attendant arithmetic and dimensional errors would scarcely come up. Thinking in frequencies 
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automatically and intuitively separates the two components of risk described earlier into two 

activities everyone does easily from an early age -- they visualize the possible outcomes and 

their costs as separate cases, and they count the cases. 

 Everyone working in fishery systems should also recognize the special problem that 

perceptions of risk are often quite different from experts' estimates of risk (Slovic, 1987). 

Perceptions of risks by stakeholders tend to be higher than estimated risks when, (1) they have 

less control over uncertain events, (2) they are not actively involved in the decision-making 

process, (3) the source of risks is completely new, or (4) risks are not being shared equally 

among stakeholder groups (Slovic, 1987). This again is a well-studied topic in the literature of 

cognitive psychology and management science. If fisheries scientists and managers are aware 

of these factors affecting perceptions of risk, they can take steps to reduce errors of 

interpretation and conflicts. Fisheries scientists and managers would therefore benefit from 

becoming familiar with research results in this area and from involving cognitive 

psychologists in projects, such as Gerd Gigerenzer and his colleagues (Gigerenzer et al., 1999; 

Gigerenzer, 2000).  

 

4. Conclusion 

 There is one last important point to make about uncertainties and risk management. 

Sometimes decision makers become unjustifiably concerned about the reliability of biological 

information provided by fish stock assessment scientists because of the numerous uncertain 

components that are included in analyses, such as alternative structural forms of models and 

probability distributions of parameter values.  However, managers and stakeholders should 

keep these detailed descriptions of uncertainties in perspective. They should not put low 
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weight on the biological information simply because fisheries scientists have been so explicit 

about describing major sources of uncertainties. Such uncertainties also exist for economic 

and social factors; they are just not usually as well described as the uncertainties associated 

with physical and biological factors. Fisheries managers and stakeholders should therefore set 

the same standards for accepting information as evidence for economic and social indicators 

as they do for physical and biological indicators.  Of course, the response will be, "We don't 

have the same extent of data on economic and social indicators." This may be true. 

Nevertheless, economic factors such as price/tonne of fish show considerable uncertainty, 

analogous to that of oceanographic factors affecting mortality of fish, for instance.  We should 

therefore encourage more research on economic and social processes, including those in the 

fishing sector such as movement of vessels and discarding behavior of vessel crews (Hilborn, 

1985; Dorn, 2001; Ulrich et al. 2002). Results of such research should aim to incorporate 

harvesters into models as dynamic, not static, components, and to reflect uncertainties in 

processes and parameter values.  

 This review paper has highlighted some major challenges in fisheries science and 

management.  Potential solutions to these challenges are provided by advanced quantitative 

methods such as decision analysis, Kalman filters, hierarchical models, and operating models.  

Methods and lessons learned from other disciplines such as cognitive psychology can also 

help deal with the challenge of improving communication among scientists, managers, and 

stakeholders. Considerable research is already being conducted on many of these topics by 

scientists in the ICES region and elsewhere. Despite these advances, there is still substantial 

work to be done.  Not only do the methods such as decision analysis need to be applied in a 
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wider variety of situations, but the underlying assumptions made by each approach to the five 

challenges discussed here need to be further explored. 
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Figures  

 

Figure 1. A conceptual diagram of the flow of information and actions in a typical fishery 
system.  Rectangles represent components of the system, solid arrows indicate flows of 
information and actions between components, and ellipses represent major sources of 
uncertainty (adapted from C.J. Walters (personal communication); Hilborn and 
Peterman,1977; and de Young et al., 1999). 
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Figure 2. Risk assessment or risk analysis is a component of a decision analysis, which 
considers those uncertainties and risks when ranking management options in the context 
of a stated management objective. Results from these analyses provide advice to 
decision makers (risk managers), who also consider other information. Checkered 
arrows indicate iterative feedback.  
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Figure 3. A simplified decision tree representing the main elements of the analysis of 
management options for meeting a recovery objective for the seven spring and summer 
chinook salmon populations of the Snake River, western United States (U.S.), that were 
listed under the U.S. Endangered Species Act.  The three main management actions (out 
of six actually considered) were status quo (A1), maximize barging of juveniles during 
downstream migration (A2), and remove the four lower Snake River hydroelectric dams 
(A3). Numerous uncertain hypotheses (only some of which are shown, as reflected by ... 
symbols) are grouped into three categories, survival rate of juveniles inside the 
hydroelectric power system, survival rate outside that system, and the timing and 
physical/biological effects on the river of removing the dams. Each uncertain state of 
nature had a probability of occurrence (Pijk) (varied in later sensitivity analyses). The 
model calculated an outcome (in terms of the number of chinook stocks recovering) for 
each combination of management action and uncertain state of nature.  Management 
options were ranked based on the expected (weighted average) outcomes across all 
possible states of nature (adapted from Peters and Marmorek, 2001). 
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Figure 4. Averages across 43 pink salmon stocks from the Northeastern Pacific (Washington 
state, U.S.A., through to western Alaska) of coefficients of variation (standard deviation 
divided by the mean) for estimates of ai and γi in equation (1).  Hatched bars in each pair are 
for estimates derived from fitting equation (1) to each stock's data separately; solid bars are for 
estimates from the multi-stock hierarchical Bayesian model (results adapted from Su et al., 
2003, submitted).  
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Figure 5. True values (solid lines) of the Ricker a parameter for a simulated pink salmon stock 
and values estimated annually using standard least squares (open circles) or a Kalman 
filter (solid triangles). Hypothetical scenarios for the true Ricker a value are (A) sine 
wave, (B) step function, and (C) autoregressive (AR(1)) processes (reprinted from 
Peterman et al., 2000). 
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Figure 6. Estimates of the smoothed Ricker a parameter (solid diamonds) for three stocks of 
sockeye salmon from Bristol Bay, Alaska derived using a Kalman filter random-walk 
model, with 95% confidence limits (thin lines) (adapted from Peterman et al., 2003). 
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Figure 7. Optimal proportional harvest rates for the same sockeye salmon stocks as in Figure 
6, based on parameter estimates from the Kalman filter (solid diamonds) or the standard 
Ricker model (dashed line) (adapted from Peterman et al., 2003). It is not possible to 
estimate optimal harvest rates for years in which the estimated Ricker at value is 
negative (see Figure 6).  
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