

This report must not be cited without prior reference to the Council*

International Council for the Exploration of the Sea

CM 1990/E:35
Marine Environmental
Quality Committee

DRAFT COOPERATIVE RESEARCH REPORT ON EFFECTS OF MARINE AGGREGATE EXTRACTION ON FISHERIES

REPORT OF THE ICES WORKING GROUP ON THE EFFECTS OF MARINE AGGREGATE EXTRACTION ON FISHERIES

"This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. It should not therefore be quoted without consultation with the General Secretary".

* General Secretary ICES Palaegade 2-4 DK 1261 Copenhagen K Denmark

ICES WORKING GROUP ON EFFECTS OF MARINE AGGREGATE EXTRACTION ON FISHERIES

COOPERATIVE RESEARCH REPORT

	TЪ		

1.	INTRODUCTION3				
2.	AGGREGATE DREDGING, COASTAL ENGINEERING AND RELATED ACTIVITIES IN THE COASTAL AND SHELF ENVIRONMENTS OF ICES				
3.	EFFECTS OF EXTRACTION ACTIVITIES ON LIVING RESOURCES AND FISHERIES				
	3.4 Estimation Of Scale Of Effects And Consequences30 3.5 Fishing Activity (Trawling) As A Physical Impact33				
4.	MANAGEMENT 36 4.1 Regulatory Practices 36 4.1.1 Legislation And Review Procedures 36 4.1.2 Scientific Considerations To Be Taken Into Account When Issuing Extraction Licences 45 4.2 Resource Use Planning 48 4.2.1 Resource Mapping 48 4.2.2 Beneficial Interactions 53 4.3 Surveillance And Monitoring 55 4.3.1 Electronic Monitoring Devices 55 4.3.2 Physical Monitoring 56 4.3.3 Biological Monitoring 58				
5.	CONCLUSIONS				
6.	REFERENCES68				

Annex	1.	Code of Practice for the Commercial Extraction
Annex	2.	of Marine Minerals
	_	and Consequences85
Annex	3.	Details of National Seabed Sediment Mapping Programmes87
Annex	4.	Recent Research at a Marine Gravel Extraction
		Site off Dieppe, Eastern English Channel
Annex	5.	Contributors to the Report
Figure	.	

1. INTRODUCTION

The following report is the result of cooperative research undertaken from 1986-1990 by the ICES Working Group on the Effects of Marine Aggregate Extraction on Fisheries (MEQC Committee). Previously (1972-1979) the Working Group was known as the Working Group on Effects on Fisheries of Marine Sand and Gravel Extraction.

The terms of reference of this Working Group are:

- (a) to update the present status of marine extraction operations and their impact on the marine environment;
- (b) to examine the recent results of national research programmes on the effects of marine extraction operations on the marine environment, particularly the influence on fisheries;
- (c) to compare the national codes of practice for the control of dredging activities and to evaluate the changes since 1979;
- (d) to provide information on activities in the near future and their possible impact on the marine environment and effects on fisheries;
- (e) to advise on major issues where an ICES policy is needed;
- (f) to make recommendations on management and research, as necessary.

This group draws representation from research organisations and government agencies involved in fisheries, geological surveying, environmental monitoring, licensing and regulation of marine minerals extraction. Members of the Working Group contributing to this report are listed in Annex 1.

The structure of the report reflects the wide interests of the Working Group. Considered in detail are:

- (i) aggregate dredging and coastal engineering on the continental shelf of ICES member states;
- (ii) effects of extraction activities on fisheries;(iii) resource management including regulatory practice, conflict resolution and monitoring.

The Working Group has also produced a Code of Practice based on the Cooperative Research Report (incorporated as Annex 1) and on the regulatory experience of member nations. This Code of Practice is a free-standing document and is intended to cover all superficial mineral deposits on the continental shelf. It has been formulated to promote a good ethic of operation thereby to ensure that the marine mining industry exists in harmony with other ocean space users and no unregulated extraction takes place. The Code of Practice specifically considers the interaction of marine mining and fisheries. Particular emphasis has been placed on deposit thickness, fines generation and residual substrate character. It is therefore intended that this document will form the basic

guidelines for ICES member nations and others for the management and regulation of marine mining in such a way that fisheries and other ocean users are adequately protected.

2. AGGREGATE DREDGING, COASTAL ENGINEERING AND RELATED ACTIVITIES IN THE COASTAL AND SHELF ENVIRONMENTS OF ICES

2.1 Marine Dredging For Sand And Gravel

2.1.1 Status Of Marine Aggregate Extraction Industry in ICES Countries

A brief description of the marine aggregate industry in each of the ICES countries for which data was available to the Working Group is provided in the following sections.

Belgium

Dredging occurs in three zones off the Belgian coast - on the Zealand Banks, on the Flemish Banks and around the approach channels to the harbours of Zeebrugge and Oostende. Dredging continues at a level of about 1 million m³ per annum.

Canada

There was no mining for marine aggregates or minerals in the Canadian offshore in 1989. Appreciable quantities of sand and gravel have been dredged previously in the Beaufort Sea. This practice will likely resume should a decision be made to proceed with additional offshore oil and gas development. Elsewhere there is growing commercial interest for sand and gravel and placer deposits of gold, chromium and titanium.

Denmark

Extraction of sand and gravel for construction occurs in several areas in the inner Danish waters and in one location in the North Sea (Horn Reef). Marine sources supply 10 to 15% of the country's needs. In 1987 a total of 5.6 million $\rm m^3$ was mined. Of this 3.9 million $\rm m^3$ was used to create artificial land in reclamation projects and 1.7 million $\rm m^3$ for construction aggregate. In 1987 scme 3 million $\rm m^3$ of the landfill material was exported to Sweden.

Finland

The City of Kotka extracted about 1 million m^3 of sand and gravel for harbour facility expansion. The material was dredged mainly from two locations in shallow water (5-15m water depth). A total of 2.5 million m^3 is planned for extraction during this project.

The City of Helsinki will extract a total of 1.5 million m^3 in 1990 (a permit has been issued for 5 million m^3) for two landfill projects — a housing scheme and harbour facility.

A total of 17 million m³ has been planned for the period 1990-1997 in three main areas - Helsinki, Kotka and the landbridge to Hailuoto Island.

France

Offshore aggregate extraction in France has been stable in recent years around a figure of 3 million tonnes per annum of sand and lithic gravel. Imports of these aggregates have decreased by 7% and amounted to 900000 tonnes in 1988. However, extraction of calcareous aggregate (maerl and calcareous sand) increased from 500000 tonnes in 1987 to 630000 tonnes in 1988.

A trend away from fluvial dredging and towards offshore dredging was noticeable in 1989 which, if it persists, should lead to an increase in offshore dredging activities in the coming years. Current programmes for marine aggregate resource assessment include:

- (a) an inventory of sand suitable for construction purposes, around Guadaloupe;
- (b) an inventory of maerl and calcareous sand deposits in Brittany.

Since 1985 IFREMER has made available to marine aggregate extraction companies geological information concerning the deposits as well as maps on the nature and morphology of the seabed in and around the extraction areas. These maps contain information for environmental impact studies on the specific benthic communities for each type of seabed sediment and also on the sediment transport rates.

These offshore maps have been published for northern-most France and part of the Brittany coast. Also much valuable data is contained in the unpublished reports made for the dredging industry.

Ireland

There has been no significant extraction of marine aggregates cff Ireland in recent years, though there is occasional interest in deposits of Lithothamnion.

The Netherlands

Sandy sediments only are extracted from the Dutch sector of the North Sea and its adjacent estuaries. Figures of sand extraction for land fill schemes rose from 2.0-9.2 million m³ per annum between 1986 and 1989. At least 80% of this quantity is derived from the access channel to the Amsterdam Harbours. This rise in the extracted quantities reflects the Governmental policy to stimulate extraction at sea and limit extraction on land as much as possible. In addition an average of about 5 million m³ per annum is extracted for various beach nourishment projects. In 1988 and 1989 no major projects were carried out but in 1990 several nourishment projects are planned which will involve 6.8 million m³ in total. The amounts per project vary from 0.2 to 3.0 million m³. Recently the coastal protection policy has been reviewed. Beach nourishment emerged as one of the most economic methods of coastal protection and a need for 5-10 million m³ per year is estimated.

Sand extraction in the Wadden Sea is limited because it is thought that the natural subsidence of the area is balanced by the tidally induced import of sand from the North Sea. There is a tendency to gradually diminish the quantities extracted because it is thought that extraction encourages the erosion of the nearby coastline.

Gravel extraction in the Dutch sector of the North Sea has not started on a regular basis yet. The only interesting area is the Cleaver Bank area about 150km north west of Den Helder. A pilot project was conducted in the summer of 1989. It included an extraction of about 330000 m³ of sandy gravel, and a pre and post dredging benthic survey. An environmental impact assessment will be carried out if extraction looks economically feasible.

Another potential gravel resource, to the west of Texel (Texelse Stenen) is currently under investigation by the Geological Survey (RGD). At present gravel is either extracted from land based resources (eg from former river beds in Limburg) or imported. Should extraction continue at the present level then the land based resources are likely to be depleted in 30 or 40 years' time. As Dutch marine gravel resources are also limited new ways must be found to meet future demand. To help alleviate demand upon aggregate reserves emphasis is laid upon re-use of stoney or hard materials such as crushed concrete and bricks.

Norway

Available information on sand and gravel extraction in Norway is incomplete as a consequence of minor extractions taking place without official licences. Since 1970 the extraction has been regulated by Norwegian law. Licences are given for two year periods. Officially 66000 m³ of marine sand, gravel and shell sand was extracted in 1989. The shell sand is used for agricultural purposes.

Sweden

The extraction of marine aggregate in Sweden is very limited due to the large deposits of sand and gravel on land in eskers. In 1989 a total of $70500~\text{m}^3$ was extracted from the seabed in three areas off the west coast and in one area off the east coast of Sweden.

Some 30500 m³ was obtained in the area of Stora Middelgrund, 35500 m³ from the Kattegat at Vaszaat Haken, 1600 m³ from the Sounds at Sandflyttan, and 2400 m³ in the Baltic east of the island of Gotland.

United Kingdom

The United Kingdom is the second largest producer of marine dredged construction aggregates in the world (after Japan). Over 16% of the sand and gravel consumed in England and Wales each year is dredged from the seabed. Supplies to Merseyside, Tyneside, the Severn Estuary and London conurbations are particularly important to overcome shortages and supply problems with land-won aggregates. Marine dredging reduces the pressure to work land of agricultural, amenity or environmental value by producing sand and gravel

equivalent to the yield from about 350 hectares of land working each year.

Supplies of marine dredged aggregates currently come from six broad areas:

the Humber; the East Coast; the Thames Estuary; the South Coast; the Bristol Channel; Liverpool Bay.

The Humber, East Coast, Thames Estuary, and South Coast areas supply the South East market. As the accessible Thames Estuary deposits have become worked out the Humber and East Coast supply areas have become more important. The Bristol Channel supplies South Wales and some parts of the South West. Liverpool Bay supplies sand to Merseyside.

In South Wales and the South East of England marine sand and gravel is a crucial element of aggregates supply. In South Wales marine dredged aggregates account for over 80% of the region's sand and gravel consumption. Over 95% of the marine dredged aggregate landed in South Wales is sand, providing the region's principal source of fine aggregates. The South East is dependent upon marine dredged sand and gravel to make up the shortfall in its production of concreting aggregate. At the present time over 11 million tonnes, about 37%, of the sand and gravel used in the South East is marine dredged and the majority of this material is used as concreting aggregate. The sand and gravel dredging industry supplies approximately 15% of the demand for such products as ready mixed concrete, concrete blocks and other prefabricated concrete products. In 1989 over 22 million tonnes of marine aggregate were landed at wharfs in the United Kingdom with another 2 million going for export to mainland Europe. The recent growth of the industry has been very rapid with production nearly trebling since the early 1960s. The total quantity of aggregate reserves that lie in the UK territorial waters has yet to be fully quantified. Present reserves probably lie between 400 and 500 million tonnes and at the current rate of use will become exhausted within the next 20 years or so.

United States

Sand and gravel is being dredged in New York harbour and marketed for use as fill material and construction aggregate. This is the only active, commercial marine mining operation in the US. Material is being removed from the dredged, main shipping channel at a rate of about $800000~\rm m^3$ per year. There has been continued interest in both expanding mining in New York waters and starting operations in New Jersey, Connecticut Rhode Island and Massachussetts, especially around Boston but there are no definite plans as yet to begin operations. Other dredging operations have been used to supply sand for constructive uses, primarily for beach nourishment on a case-by-case basis. There is no central compilation of beach nourishment projects but an estimated 2 to 5 million $\rm m^3$ are

provided from offshore sources each year. About half of this is provided by the routine dredging of inlets.

2.1.2 Land Versus Marine Supplies Of Aggregate

Traditionally, sources of aggregate for the construction industry have been mainly land based, ie sand and gravel pits and hard rock quarries. In recent years, continued use of these sources of aggregate has been challenged, particularly on environmental and aesthetic or amenity grounds for the following four reasons:

- o sand and gravel deposits may coincide with the best quality agricultural land. (This is the case in the UK but not, for example, in Finland);
- o land based sources of aggregate are not considered to be good neighbours because of the noise and dust generated;
- o transport of such bulky materials can be a problem, particularly where access to rail or inland water ways is limited;
- o sand and gravel pits and quarries often cause significant permanent changes to the landscape and, after use, can threaten sensitive interests such as underground water supplies.

Marine dredging, especially trailer suction dredging, properly controlled, has relatively little impact on the physical make up of the seabed and the topography may revert quite quickly once the dredging ceases. Although the start up costs are high with marine aggregates, the economics of scale are very substantial, one 2,000 tonne cargo is equivalent to one hundred 20-tonne lorry loads.

Nevertheless, there are concerns associated with marine aggregate mining related to fishing, navigation, coastal protection and disruption of benthic ecosystems. Fishing gear, particularly fixed gear, can be sensitive to disruption and damage by towed dredging equipment. In some cases, outwashings or the screening of fines from the dredged cargo may result in excessive siltation of the seabed with a detrimental impact on benthic populations including shellfish stocks such as bivalve mollusca. Excessive siltation can also affect benthic nursery grounds and may even affect species such as crabs and lobsters which depend on a silt-free environment for feeding and breeding. Aggregate dredging in shipping lanes or shipping routes in relatively restricted waterways can interfere with the safe passage of other vessels. Offshore aggregate production can affect coastal protection either by interfering with the supply of sand and gravel to the beach or by reducing offshore wave protection and therefore changing wave energy and/or direction reaching the coast.

2.2 Uses Of Marine Aggregate

The use of marine sand and gravel in the construction industry is limited to relatively few countries, principal among which are Japan, the United Kingdom, Belgium, Sweden, Denmark and Finland. There may be a prejudice to the use of marine aggregate for certain applications such as reinforced concrete because of unfounded fears concerning the salt content (Gutt and Collins, 1987).

Marine aggregates, however, have played a major role in applications requiring large quantities of materials such as public works, land reclamation, beach replenishment and island and reef construction. In contrast to the construction industry, marine aggregate offers advantages related to its quality, availability, and ease of transport and delivery.

Quality

The benefits of using the marine sand and gravel for beach replenishment, especially where the beach has a high amenity value are obvious. The new beach will have a "natural" look. Marine sand and gravel is usually well mixed and readily forms a stable base which allows rapid colonization by plants and animals endemic to the original beach.

Availability

Major construction plans at sea often require the aggregate to be put on site over a relatively short period to minimise the risk of loss particularly during adverse weather conditions. The limited capacity of land based pits and restrictions preventing continuous work schedules may make them unsuitable for large scale marine reclamation.

Transport and delivery

Coastal and offshore construction sites often have limited access from the land, but are readily approachable from the sea. At docks and harbours or areas where there is a sufficient tidal range, the dredger can deliver the sand and gravel directly on site where conventional earth moving equipment can make the final placement. Even where marine access is restricted, eg because of water depth, a modern dredger linked to the shore by flexible pipeline can deliver even stony cargoes to the beach and sandy material many kilometres inland.

2.2.1 Land Reclamation

Land reclamation occurs throughout the inhabited world. Pressure for this essentially stems from increasing populations allied to increasing gross national product. Land may be reclaimed for agricultural, residential, recreational or commercial use.

Different methods of reclamation can be applied. One consists of containing a section of sea by sinking a sheet piling. The sea water is then displaced with a fill material such as gravel, sand or heavy mud which is then left to consolidate before being capped. Often the sheet piling is reinforced and a structure constructed on

top to prevent incursion by the sea. Alternatively, in locations where the water conditions are reasonably placid, the land can be extended over the required area without first installing a sheet piling. In such cases, concrete walls or sheet piling may installed afterwards for further protection.

2.2.2 Beach Replenishment

Beach profiles are dynamic and constantly changing because of the energetic nature of the beach environments. They are also strongly influenced by any change in the onshore/offshore movement of seabed sediments and littoral drift of sand.

It has been traditional to protect vulnerable coastlines from wave attack with sea walls and groynes (hard protection). Such protection is designed to stop littoral drift and prevent erosion. This has led in many instances to an interruption in supply of sand to the coast adjacent to the remedial work. In other cases, the protective structures have caused an increase in erosion because of the reflected wave energy from the sea wall. In recent years there has been a move towards 'soft' coast protection either on its own or in conjunction with sea walls and groynes.

Many beach replenishment projects occur on the east coast of the United States. Along this coast over 200 operations have been documented at more than 90 sites during the last 20 years (Pilkey and Clayton, 1988). Over the past eight years more than 18 million m³ of fill material were supplied from marine sources. This supply was about equally divided between offshore borrow areas and the dredging of navigation channels.

There have been 43 projects in the Netherlands since 1952, the largest occurred in 1971/72 and involved placement of about 19 million m³ of dredged sediment from the Rotterdam Harbour approaches. In a recent evaluation of 9 Dutch projects it was concluded that 5 of these have fulfilled expectations with regard to their predicted lifetime (5 to 10 years) and a further 3 probably will. Further it was concluded that beach nourishment is a cost effective way of combatting coastal erosion. Thus in the coastal defence policy analysis beach nourishment schemes are seen as the most attractive means of protecting coastal stretches. It is estimated that about 5 million m³ per annum will be involved.

In Germany the major beach replenishment activity has been around the east Frisian Islands. The advantages of beach nourishment over the more conventional hard structures have also been recognised on the Georgian coastline of the Black Sea in the Soviet Union. The UK has carried out a number of beach replenishment projects over the last 30 years, the most extensive ones having been at Hengistbury Head on the south coast of England where more than 1.5 million m³ of sand and shingle were used to protect about 15 kilometres of coastline. In 1987 1.5 million m³ were placed on 2.5 kilometres of beach at Seaford, again on the south coast of England. Recently an up to date and comprehensive source of information on beach replenishment projects has been published (C.U.R., 1987). This excellent review pays attention to coastal processes, design, execution and to the environmental aspects of

such projects. A literature survey and an evaluation of some specific case studies is also included.

2.2.3 Island And Reef Construction

Artificial islands have been built for a variety of purposes including increasing available land in densely populated areas such as Japan and Hong Kong. They have also been used by the offshore oil industry and for venting undersea coal mines. Artificial islands have been used in the United States for the disposal of contaminated dredged material (Hubbard and Herbich, 1977). Dredged sediments have been used in estuaries and other coastal areas to create small islands and wetlands for use by wildlife.

The recent trend towards larger ships has led to the consideration of the construction of artificial islands and reefs as alternative port facilities. Such islands could solve the many problems related to increased draft of ocean going vessels. These problems include:

- o the destruction of coastal habitats to provide new deep water ports;
- upgrading and maintenance of existing ports by dredging;
- o coastal erosion associated with port activity.

Artificial reefs or breakwaters are built mainly for protection against wave attack. In Japan 4,000 breakwaters have been built in the last 20 years. In addition to these traditional uses, however, artificial reefs have been built to promote fishing activity. In the United States the National Fishing Enhancement Act of 1984 has promoted the use of artificial fishing reefs. The concept has also been applied in the United Kingdom where Southampton University have built a trial fishing reef of concrete blocks.

EFFECTS OF EXTRACTION ACTIVITIES ON LIVING RESOURCES AND FISHERIES

This Chapter describes the various impacts (physical, chemical and biological) of dredging extraction activities on the seabed and the water column and thence on living resources. This is followed by an estimate of effects and consequences. The Chapter concludes with a paragraph on the impact of trawling on the seabed, which although minor on a local level compared to dredging, is much greater on a regional basis due to the widespread distribution of trawling activities.

3.1 Nature Of Physical Impacts On Sea Bed And Water Column

Before discussing the nature of the physical impact of sand and gravel extraction is it necessary to outline the processes involved in mining aggregate at sea.

The two methods most commonly practised in aggregate extraction in the northern European waters are anchor hopper dredging and trailer suction hopper dredging (Dickson and Lee, 1973; de Groot, 1979b). In the former, the dredger anchors over the deposit and mines it by suction through a forwardly directed pipe (Figure 1A). Large pits are thus formed on the sea floor, up to 20m in depth and 75m in diameter (Cruickshank and Hess, 1975). Trailer dredgers, in contrast, extract the deposit by suction through one or two backwardly directed pipes whilst underway, thereby forming shallow furrows on the sea floor (Figure 1B). These are generally 20-30cm deep and up to 2m broad. Apart from the Bristol Channel and Liverpool Bay the majority of aggregate dredging in UK waters is now by trailer suction dredger.

In both instances the aggregate and water is piped aboard to the ship's hopper. As the hopper fills, the aggregate displaces the water which overflows back to the sea, carrying with it suspended mud and silt, and forms a turbidity plume. On some dredgers screening of the aggregate is carried out and excess sand or pebbles are returned to the sea floor to maintain a specific sand to pebble ratio in the cargo.

The most serious physical impacts resulting from these activities are:

- (a) substrate removal and alteration of the bottom topography;
- (b) the creation of a turbidity plume in the water column;
- (c) redeposition of fines from the turbidity plume;
- (d) oversanding and other problems related to screening.

(a) Substrate removal and alteration of the bottom topography

The most obvious impact of sand and gravel extraction is the removal of the substrate and the resulting destruction of its infaunal and epifaunal biota. Once created, infill of the pits and furrows is dependent upon the ability of bottom currents to move the surrounding sediment. Except in areas of mobile sand this tends to occur very slowly (Eden, 1975). For example, Van der Veer

et al. (1985) describe the recovery of pits formed in sandy substrates in the Dutch Wadden Sea. Those situated in tidal channels filled within one year of formation whilst others in tidal water-sheds took five to ten years to fill and those dug in tidal flat areas were still visible after fifteen years.

Dickson and Lee (1973) and Millner et al. (1977) studied the recovery of test pits and furrows dredged in gravel in the Hastings Shingle Bank and the Southwold area respectively. They found that even furrows which were only 20-30cm deep when formed were still clearly visible on sector scan sonar records made up to four years later. Shear stress measurements taken in both areas showed that even the strongest tidal currents are incapable of transporting gravel from the adjacent sea floor into the depressions. Infill therefore occurs extremely slowly, largely through sediment fallout from suspension. Long-term dredging of an area will result in the sea floor being cratered or traversed by numerous furrows.

A further implication of the formation of a pit, or the removal of a significant thickness of sediment by trailer dredging is a localised drop in current strength associated with the increase in water depth. This results in reduced competency of the bottom currents and hence deposition of finer sediment. Infilling of dredge pits in a variety of settings with sediment finer than that constituting the surrounding substrate has been noted by a number of authors (e.g. Kaplan et al., 1975; Hily, 1983; Van der Veer et al., 1985).

Other factors which may arise from aggregate removal include oxygen depletion within bottom waters in the depressions (Bonsdorff, 1983; - see also Section 3.2), the exposure of a substrate type differing markedly from that above it (see de Groot, 1979a) and the alteration of wave and tidal current patterns which may affect coastal erosion.

Fisheries interests may be seriously affected by the dredging process where spawning grounds coincide with the deposit to be mined (ICES, 1975). A prime example is that of the herring, certain groups of which spawn on stony or gravelly substrates influenced by strong bottom currents in the North Sea and are hence most vulnerable (de Groot, 1979b). Sandeels and edible crabs may be similarly affected. In addition, the uneven sea floor topography created by dredging can cause snagging of long lines and bottom trawls in pits or around boulders exposed by removal of the surrounding substrate (Cruickshank and Hess, 1975). Lastly, certain demersal fish species may be affected by the removal of benthos forming part of their food source (ICES, 1975).

Complete benthic recovery of a dredged area may take from one month to fifteen years or more depending upon the stock of colonising species and their immigration distance (Bonsdorff, 1983). De Groot (1979a) has estimated that, subsequent to large-scale sand dredging in the North Sea, full benthic recovery may be expected to occur in three years.

(b) Creation of turbidity plume in the water column

An increase in water turbidity is associated with the dredging process, the magnitude of which is related to the proportion of mud and silt in the aggregate and the natural turbidity of the water. The duration of the plume in the water column depends upon factors such as water temperature, salinity, current speed and the size range of the suspended material. Eight to one hundredfold increases in turbidity during different dredging activities have been recorded by various authors (Collinson and Rees, 1978; Poiner and Kennedy, 1984; Van der Veer et al., 1985).

The main implications for fisheries have been outlined by de Groot (1979a). Avoidance of the turbid area by visual feeders such as mackerel and turbot may occur. Alternatively, some fish species may be attracted to the area by the 'odour stream' of the crushed benthos. Similarly, primary productivity within the water column may be either increased or decreased depending upon the ability of the feeding zooplankton to deal with the increase in nutrients and other suspended material.

In high energy areas close to eroding coastlines, such as parts of the North Sea and the Bay of Fundy, few problems are anticipated to arise from turbidity caused by outwash fines owing to high natural background levels of turbidity. For example dredging in Dutch waters is expected to cause an increase in turbidity due to overflow fines of 3mgl⁻¹ during maximum tidal current conditions and 32mgl⁻¹ during slack water conditions (Vink, 1988). This latter value is comparable to that during storm conditions.

(c) Redeposition of fines from turbidity plumes

Redeposition of fines will be concentrated within the dredging area but like the turbidity plume will also extend beyond it depending upon the current strength, storm resuspension, water salinity and temperature, and the grain size of the suspended material. Once settled on to the sea floor, the sediment will still be liable to resuspension or transport over the substrate, although on gravelly or rocky substrates it will tend to accumulate in crevices and behind stones and other projections, where currents are weakest.

The prime risk of redeposition is smothering of fish eggs on spawning grounds, such as those of the herring and sandeel, and suffocation of filter-feeding benthos such as mussels (see Collinson and Rees, 1978). In addition, certain shellfish such as lobsters may be put at risk by habitat loss through silting up of the crevices in which they live, while edible crabs which become torpid while brooding may be especially susceptible to smothering and suffocation by sediment fallout (Howard, 1982).

(d) Oversanding and other problems related to screening

The practice of screening out sand directly back to the sea floor may significantly alter the substrate and change a stable gravel bank into an area of mobile sand. Whether this process will be adopted much by the extraction industry is open to question as the sand cover so formed will, with time, prohibit trailer dredging

of deeper gravel deposits (Nunny and Chillingworth, 1986). Little research has been carried out on the effects on fisheries interests of oversanding but it is anticipated that the fauna colonising the sand deposits could be relatively sparse or have a different species or size compostion compared to the benthic communities previously inhabiting the gravel floor.

Hypothetically, the converse case may arise where pebbles and boulders are returned to the sea to maintain an ideal gravel mix on ships. In this case the newly-formed pebble and cobble layer would be completely immobile and benthic recovery should occur once silt and sand has infilled the interstices between the stones.

In summary, the potential physical impact of sand and gravel extraction is site-specific depending upon numerous factors such as the extraction method employed, bottom current strength, sediment mobility and bottom topography.

3.2 Nature Of Chemical Impact On Sea Bed And Water Column

The bulk of aggregates are sands and gravels which because of their composition, low surface area and low surface activity show little chemical interaction with the water column. The components of aggregates which may have some effect are the organic material and clays. However, as aggregate of marketable quality is low in these materials, the effects are only of minor importance. The processes which can occur are discussed below.

Aggregate dredging can have marked, physical impacts on the sea bed and water column as discussed in Section 3.1, and these may result in some chemical effects. Firstly, sediments are disturbed at the sea bed resulting in mixing of the sediment with the overlying water and, secondly, fine sediments are discharged to the water surface as overflow during processing. A third physical effect is the mixing of sediment particles with water in the suction pipe.

The disturbance of sediment at the sea bed will result in the mixing of interstitial waters with sea water and thus possible release of chemical components from sediment to the overlying sea water. The composition of the interstitial water is likely to be most strongly affected by organic matter within the sediments. For example, the decomposition of this material can lead to i.a. nutrient and metal enrichment in the interstitial water.

Decomposition of organic matter, desorption of components from organic matter and clay minerals, and dissolution of soluble material may also occur when sediment particles and water are mixed by disturbance, uptake or discharge. The main effects of mixing on the water column are likely to be increased consumption of oxygen by decomposing organic matter and release of nutrients and metals by the same. As an example, assuming trailer suction during one hour, covering an area of 1500m by 200m extracting 5000 m³, with a specific weight of $1.6 \, \mathrm{tm}^{-3}$, containing 5% by weight of particles smaller than 80 microns, it has been calculated that, if the overflow fines contained 1 tonne of material which could be mineralized, then the oxygen consumption would be about $0.03 \, \mathrm{mg} \, \mathrm{O_2} \, 1^{-1} \, \mathrm{hr}^{-1}$. On the other hand suspended clay minerals, due to their surface activity may act as surface adsorbants of dissolved compounds in the water. This seems to be the case with hydroxides of iron and manganese.

However, it must be re-emphasised that the chemical effects of aggregate dredging are likely to be minor due to the very low organic and clay mineral content of the sediments. Also dredging operations are generally of limited spatial extent and only of short duration which further limits the chemical impact.

3.3 Identification Of Biological Targets And The Nature Of Biological Impacts

Dredging activities cause changes to the existing biological community. The impacts range from a temporary reversion of a small area of seabed to an earlier stage of succession to, at the other extreme, permanent changes to community structure, including the elimination of some species. In the following sections the nature and significance of these changes is examined and vulnerable species identified.

3.3.1 Insensitive Communities And Species

Recovery or readjustment* of a benthic community after dredging depends primarily upon the nature, magnitude and duration of the dredging operation, the nature of the new sediment which is exposed or subsequently accumulates at the extraction site, the larval and adult pool of potential new colonizers and the nature and intensity of the stresses which the community normally withstands.

The influence of these factors shall be looked at in turn, prior to consideration of which communities and species my be least sensitive to this form of disturbance. Finally, benthic sensitivity to sediment redeposition from the dredger's outwash shall be discussed briefly.

(a) Nature and magnitude of dredging operation

It is obvious that the scale of any dredging operation significantly influences the severity of its impact upon the benthic community: the more extensive the operation the greater the initial defaunation and the greater the immigration distance colonizing species must travel. Within a shipping channel in Coos Bay, Oregon, studies by McCauley et al. (1977) of a maintenance dredging operation at one site revealed that sediment had not been removed uniformly from the channel floor by the suction head. Instead, as a result of imprecise ship navigation and a low number of passes, furrows were created, separated by undisturbed hummocks of sediment, containing adult populations of benthic organisms capable of repopulating the dredged furrows. The result was, naturally, a high variability in faunal density ('replicate' grabs revealed 6 organisms/1000cc and 937 organisms/1000cc sediment respectively!) but, more importantly, readjustment progressed twice as rapidly at this station, because of the immediate proximity of dredged tracks and undredged hummocks, as at other stations where sediment removal was more extensive and even.

^{*}McCauley et al. (1977) have proposed that the term 'readjustment' be used instead of 'recovery' when describing the consequences of dredging activity upon a benthic community, as the community may never 'recover' to the stable state in which it existed prior to dredging. Herein the term 'recovery' is used only when it has been demonstrated that a benthic community has returned to its pre-dredging condition.

The mode of dredging too is important — the immediate impact of anchor dredging upon the sea floor and its biota is severe but localized whilst that of trailer dredging is less profound but more widespread (Dickson and Lee, 1973; Cruickshank and Hess, 1975). In general, the latter method is to be preferred as it is more likely to leave the sea floor in a similar condition to its pre-dredged state and hence more suitable for recolonization by the ambient fauna. Moreover, as water circulation is usually reduced within anchor dredge pits periodic or long-term oxygen depletion within the bottom waters in the pits may result, thereby inhibiting faunal development (Bonsdorff, 1983; Oulasvirta et al., 1987).

(b) Nature of new sediment in extraction site

The character of the sediment which is exposed or subsequently accumulates in the extraction site after dredging is completed significantly controls the structure and composition of the colonizing benthic community. Should the composition and topography of the exposed or accumulating substrate resemble that which originally existed then recolonization of it by the same bottom fauna may also proceed (e.g. see Windom, 1976). This may occur if a finite thickness of sediment is removed uniformly over a large area of the dredging ground exposing similar sediments to those which originally existed. Such mining strategy would consequently appear prudent in minimizing environmental impact, though in practice the precise navigation necessary may be difficult to exercise (see Nunny and Chillingworth, 1986, p.114).

The more typical consequence of suction dredging is the creation in the substrate of numerous furrows or pits.

Sediment may accumulate in these dredge pits or tracks by one or more of the following means:

- (i) through bedload transport of mobile sand;
- (ii) by natural deposition of fines from the water column;
- (iii) through slumping of the pit walls;
- (iv) by deposition of outwash fines from the dredger.

Of these, infill by transport of mobile sand into the dredge pit or track is the most rapid and dominant process, should the dredge site be located in an area of active sand transport. By contrast, pit infill in sites outside of such areas is generally very slow (Eden, 1975). Indeed, complete and rapid regeneration of a dredged deposit to its former state tends to occur only in areas of mobile sand transport. This is because the current regime which acts upon the extraction site after removal of the sediment is frequently dissimilar to the one which laid down the deposit originally. Gravel deposits are a prime example. The majority of these on the north-east North American and north-west European continental shelves were deposited by fluvial and fluvio-glacial processes during the Quaternary, when sea level was considerably lower than at present, and then submerged as the sea level rose again (Anderton et al., 1979, p.272;

Reineck and Singh, 1980, p.413). The tidal currents which now affect the gravel are too weak to transport the pebbles and so once the aggregate is removed only silt or sand may accumulate in its place.

Shelton and Rolfe (1972) and Millner et al. (1977) have studied the fauna of dredged gravel substrates in the southern North Sea and English Channel. Dredge pits and tracks excavated up to four years before their surveys were still recognizable on side-scan records even though certain dredge tracks had only been 30cm deep when formed. Such infill as had occurred was generally of silt or sand. Shelton and Rolfe further noted that the fauna colonizing the new substrates were characteristic of the introduced sediment type and thus differed from the biota colonizing adjacent undredged gravel substrates.

In areas of active sedimentation the dredging activity itself may sufficiently alter the sea-floor topography or increase water depth that currents will slow down over the dredged tracks or pits. thereby causing deposition of finer sediment. This process has been noted by Kaplan et al. (1975), Hily (1983), and Van de Veer et al. (1985) as a result of various dredging and extraction operations. Again, changes in species composition of the colonizing benthic community, where this was studied, resulted from and, in general, reflected the changes in substrate type.

A final example of the effect on benthic community type of altering the substrate through sand extraction is described by deGroot (1979a). In a small area of the Seine Bay sand and gravel overlying a rocky substrate was removed by French scientists and the recolonization process studied. No deposition of sediment upon the exposed pebbly and rocky ground occurred and, as a result, a hard-ground fauna subsequently developed which had less food value for demersal fish species than the previous soft-bottom fauna. In this particular example it was concluded that more widespread dredging might seriously affect local fish stocks. In practice, however, a gravel or sand deposit will never be removed entirely by dredging because the removal of the last part of the resource would be uneconomic.

In contrast to the aforementioned situations in which dredging results in development of an altered substrate type, extraction of sediment from areas of mobile sand has a far more transient effect on sea-floor topography. Infill of the excavated site is of sediment similar to that removed by the dredger and hence the colonizing benthic community is similar in composition to that originally present. The timescale of benthic recovery is also reduced; Van der Veer et al. (1985) record readjustment of benthos following dredging in sub-environments of the estuarine Dutch Wadden Sea. In one tidal channel pit infill and benthic recovery occurred within a year of excavation. In contrast, dredge pits on tidal flats, where rates of sediment transport were much lower, were not completely infilled even after eleven years.

(c) The stock of colonizing species

With the exception of certain errant epifaunal species or deep-burrowing biota which might display avoidance reactions to

an oncoming draghead, dredging may result, initially, in complete defaunation within the dredged pits. The subsequent pattern of colonization may therefore be similar to that which ensues after the abatement of organic pollution (Hily, 1983) or severe storms (Millner et al., 1977). Classically, this proceeds with an influx of 'opportunistic' species and then, assuming no further dredging occurs, succession proceeds towards a more diverse and stable community dominated by larger, long-lived, species. If, however, dredging continues periodically, succession may be impeded so that opportunistic species continue to predominate. The precise composition of the communities then depends upon the supply of adult and larval species to the extraction site and their suitability to live in it (Wildish, 1977).

Naturally, the adult species most readily available to immediately colonize the newly exposed sediment will be mobile epibionts inhabiting adjacent undisturbed sediments. Indeed, the disturbance of the sediment caused by dredging may have the immediate effect of increasing food availability to epifaunal scavengers and carnivores, attracted by the presence of crushed and injured biota left in the wake of the dredgehead. Mature sessile epibionts and infaunal species, by contrast, will be unable to immediately exploit the dredged area except where slumping of the pit walls or survival following storm redistribution occurs.

The potential for colonization through larval recruitment is less tightly constrained by proximity of undisturbed communities and the habits of the species concerned. A wide range of benthic species are planktonic as larvae and so immigration by such species is more dependent upon current direction and velocity and the species composition of the substrates over which they flow, the time of year at which larvae are shed and the duration of the planktonic stage (Wildish, 1977). Because, however, many sessile biota such as corals and erect hydroids and bryozoa take a number of years to reach maturity stabilization of a community in which they form a part may still be prolonged (see Rees, 1987).

One further potential source of both adult and juvenile biota is from the overflow of the dredger itself (Van der Veer et al., 1985). It is likely that small, shelled organisms such as certain bivalves and gastropods will be most resistant to the turbulence inflicted by the suction process and so will have a greater potential for survival.

Thus different faunal groups are variously suited to colonize a dredged area depending upon their abundance in surrounding undisturbed grounds, their ability to migrate into it as adults or settle onto it from the water column as larvae and their suitability to live in the sediment accumulating there.

(d) Recovery potential of benthic communities in 'high stress' areas

Soft sediment communities in areas exposed to strong tidal currents and/or periodic storm disturbance are often dominated by short-lived 'opportunistic' colonizers, at least in surface layers.

Studies of the consequences of dredging upon such communities indicate that they are more adept at readjustment to the impact of dredging operations than are more stable and diverse communities. For instance, in their study of the effect upon benthic infauna of maintenance dredging within a busy shipping channel in Coos Bay, Oregon, McCauley et al. (1977) noted that, in addition to the impact of periodic dredging, the community was subject to disturbance through tidal scour, propwash from passing marine traffic and discharge of industrial, domestic and shipping wastes. Readjustment by the benthic community to pre-dredging conditions occurred within 28 days, a consequence, the authors suggested, of the community being suitably adapted to a naturally stressful environment.

Similarly, certain infaunal species inhabiting shifting sand deposits such as sand waves, bars and megaripples may be capable of withstanding displacement from the sandy substrate during storms and so are conditioned to deal with stressful physical impacts. Such communities therfore will be less severely affected by mining operations than those on more stable substrates (see de Groot, 1979a).

Summary Of Benthic Sensitivity To Sediment Removal

It is clear that many factors influence the ability of a benthic community to readjust to the stresses of sand and gravel extraction or dredging, the most important of which have been outlined above.

With respect to the impact of such operations on the benthic ecosystems of the north-west European continental shelf the least sensitive communities are those inhabiting continuously reworked or mobile sand deposits such as sand waves or sand bars.

Few benthic species in the immediate path of the draghead are insensitive to the dredging operations save those resilient enough to withstand suction onto the dredger, followed by settlement from the ship's overflow, such as certain small thick-shelled molluscs, and those deep-burrowers and mobile epifaunal species capable of displaying fast avoidance reactions. Even those opportunistic species which may proliferate upon a newly dredged track or pit can only remain dominant whilst instability of the community continues, for instance through repeated dredging. Otherwise it may be anticipated that the community will mature and stabilize to its pre-dredged state, provided that the new substrate and hydrodynamic conditions resemble those which originally existed at the site (Augris and Cressard, 1984).

Thus, with the exception of those groups of organisms cited above, no benthic species are insensitive in themselves to disturbance by sand and gravel extraction; they must instead rely upon cessation of the dredging operation, physical recovery of the dredging ground to its previous state, and an adequate supply of colonizing individuals, from adjacent undisturbed grounds or through larval recruitment, before they can fully re-establish themselves.

Benthic Sensitivity To Sediment Re-deposition

Where studies have been carried out of benthic recolonization following dredging in areas subject to sediment fallout from the ship's overflow but not directly disrupted by dredging itself, the impact upon the ecosystem has been observed to take one of four forms:

- (a) defaunation within the affected area is initially virtually complete, similar to that in the dredging ground itself, but recolonization progresses more rapidly (e.g. Oulasyirta et al., 1987);
- (b) defaunation is less pronounced than in the dredging ground and recolonization is more rapid (e.g. McCauley et al., 1977);
- (c) species richness and abundance is enhanced in the area of sediment fallout (e.g. Poiner and Kennedy, 1984);
- (d) negligible effect is detected (e.g. Millner et al., 1977).

Thus the impact upon the benthic ecosystem of sediment redeposition is not normally so severe as that resulting from the direct removal of the substrate and its indigenous fauna. Benthic species least sensitive to such deposition will naturally be species capable of burrowing rapidly through the sediment and most motile epifauna. The degree to which they cope with the sediment influx will depend upon the taxa, its size and the rate of sedimentation.

Sessile epibionts generally have greater difficulty withstanding increased turbidity and sediment deposition. However, as such species predominate on gravelly and rocky substrates, the strength of the currents in such areas could well be strong enough to transport most fine material elsewhere, ameliorating its effect. Only shellfish species which reside within rock crevices for example may be affected through habitat loss resulting from accumulation of the sediment in such places (see Howard, 1982).

It has been proposed that effects of sediment redeposition at an extraction site in the southern North Sea should be minimal owing to the natural high turbidity of the area (Milner et al., 1977). The corollary that detrimental effects should be enhanced where water clarity is greatest does not necessarily hold true however; Poiner and Kennedy (1984) found that species richness and abundance actually increased within the region of sediment deposition from a turbidity plume resulting from dredging of a sublittoral sand bank off Queensland, Australia. The cause of this, they suggested, was that the redeposited sediment represented an increase in resource availability upon the sea floor which was sufficient to enhance the biota yet was not so pronounced as to smother them. Turbidity levels before and after dredging averaged 3mgl-1, increasing to 25mgl-1 during the operation.

Thus the magnitude of the effect of sediment redeposition upon a benthic ecosystem depends largely on the nature of the indigenous fauna, the deposition rate and the increase in water turbidity relative to the region's natural turbidity.

3.3.2 Sensitive Species And Communities

3.3.2(a) Sandeels

The sandeel is a non-migratory species to which dredging clearly poses a threat where there is a major industrial fishery based on a few restricted areas of the sea bed. According to the first ICES report on sand and gravel extraction (Anon., 1975) Danish and British fisheries for this species exist between 53°N-54°N and west of 3°E, which coincides with one of the major gravel deposit areas.

Sandeels lay their eggs in the sand, and sand grains of a certain size adhere to them. When the eggs are fully covered with fine material, the development of the embryo will be arrested. The outwash fines released during dredging may result in a less successful hatching. Therefore, it is advisable that dredging is not allowed during the spawning season of the sandeel in an area where there is an important fishery for this species. On the other hand, sandeels contribute to the diet of many important gadoid species as well as the turbot. The value of the sandeel as fish food is therefore likely to be indirectly much greater and more important than the landings of the species for the fish-meal industry of Denmark or the UK.

Since 1973 sandeel catches from ICES IVb and IVc (Central and Southern North Sea respectively) have been on the decline while those from area IVa (Northern North Sea) have increased.

The diurnal habits of the sandeel make them more vulnerable to dredging than nearly any other fish species. Feeding and swimming activity is limited by light and when the fish cannot feed, they remain in the sand, either completely buried or partially emerged (Winslade, 1974). Therefore the fishery on this species takes place only during the daylight hours, catches at night being very small (Macer, 1966).

Still it must be possible for the two industries to work side by side in a harmonious manner, if the knowledge of both parties is brought together to reduce the effects of dredging.

3.3.2(b) Herring

Harmful consequences for the herring and its fisheries from the impact of the dredging of its spawning grounds were pointed out at the first meetings of the ICES Working Group on Effects of Marine Sand and Gravel Extraction (ICES, 1975;1977).

The herring, Clupea harengus L., is found on both sides of the Atlantic within the North Boreal zone. The herring can be divided into seven main races which spawn in different seasons and on different grounds. Spawning populations on certain banks

on the west central North Sea and the "Downs" in the English Channel are directly affected by marine gravel mining.

Herring lay demersal eggs which adhere to stones or gravel (Bolster and Bridger 1957, Parish et al. 1959, Hemmings 1965, Drapeau 1973, Dorel and Maucorps 1976 and Oulasvirta et al. 1987) or algae (Tibbo et al. 1963) and the spawning beds are small. Bolster and Bridger (1957) for example found the spawn of the Downs herring was generally attached to flints, 2.5-25 cm in length, where these occurred over gravel; the heaviest concentration was found within an area 3.5 km long and 400 m wide. The average composition of the sediment was boulders 42.2%, gravel 34.0% and sand 23.8% (Dorel and Maucorps, 1976). Spawning on seaweed, such as green algae or Fucus spp, accentuates the environmental requirements of the herring as seaweeds thrive in clear water with a high current velocity. Not only is the fact that herring spawn on gravel of importance, but also that in a gravel area they select certain specific gravel beds year after year (Harden Jones, 1968). The majority of recruits spawn on the parent ground, but the data are not conclusive, and it is difficult to prove, if at all, that recruits are survivors of a particular group of larvae hatched at a certain spawning area. It is also very difficult to determine how herring returning to the spawning ground recognize the old spawning (hatching) site.

From all that is mentioned above it is clear that changes in the structure of the spawning ground, caused by dredging will negatively influence the return of herring to the spawning sites, and therefore their successful reproduction, to a high degree. In addition excessive siltation could smother eggs during the period of incubation (Hildebrand, 1963).

3.3.2(c) Coregonids

Abundant stocks of coregonid fishes occur in the brackish waters of the northern Baltic Sea. The sea-spawning species present are whitefish (Coregonus acronius widegreni Malgren) and vendace (C. albula L.). Both species spawn on sand, gravel and pebble surfaces in water between 1m and 5m deep. However, the exact location of many spawning sites is unknown.

For the first two months after hatching the larvae live in shallow water, sandy areas. On reaching approximately 5-6cm in length the fish leave the nursery areas and move to deeper water overlying sand, gravel or stony bottoms.

The coregonids are fished as intensively as the herring which also spawn in similar areas.

3.3.2(d) Cancer pagurus (Edible crab)

Stocks of the edible or brown crab (Cancer pagurus) in the English Channel support important fisheries based at numerous ports in England, France and the Channel Islands. From the English viewpoint, Channel crab landings represent 70% of total crab landings in England and Wales, and contribute approximately £4 million to the total first-sale value of £22 million for England and Wales shellfish as a whole.

Most of the Channel crab catches come from west of the Isle of Wight and in the last ten years the Devon and Cornwall fishery has expanded significantly to exploit grounds in mid-Channel. Fishing has also increased, however, east of the Isle of Wight and although this fishery is still relatively small overall, it is locally important to individual groups of fishermen. Since the eastern Channel is also now seeing an increase in requests for licences to prospect for, or extract, gravel, a conflict of interest has arisen with fishermen over access to the sea bed. Shellfish biologists are also concerned about whether gravel dredging could adversely affect crab populations. At present the main areas of conflict are the Shingle Bank, approximately seven miles south of Hastings, where prospecting has suggested there are large gravel deposits ready for extraction, and the area between Bembridge and Selsey, just east of the Isle of Wight, where extraction has already disturbed the sea bed and where other prospecting is going on or is planned. The present concern for these areas dates from about 1985.

Fishery studies in the western Channel show that the main fishery occurs in the autumn, when the catch is predominantly ripe females which tagging shows to have migrated westward (Brown and Bennett, 1980; Bennett and Brown, 1983). In the small spring catch, males predominate. Biological studies show that at the onset of winter mature females cease feeding and enter an overwintering phase during which the eggs are extruded and then brooded under the abdomen until they are released the following June (Edwards, 1979). Ovigerous crabs cannot be caught in pots, and chance diving observations suggest that at this life history stage crabs may seek the protection of rocky outcrops and ledges in deep water (Howard, 1982).

Preliminary studies at Shingle Bank show that the crab fishery there is also based mainly on a seasonally high catch rate of mature female crabs in autumn. Local wreck divers also report seeing ovigerous crabs dormant at several sites in the vicinity in winter. Log-book data suggest that the distribution of autumn catches shifts progressively westward and, taken together, the evidence suggests an underlying biological pattern similar to that in the western Channel. This suggests in turn that eastern Channel gravel beds support overwintering concentrations of ovigerous crabs vulnerable to seabed disturbance during dredging.

This has been accepted as a basis for interim restrictions on dredging at Shingle Bank. The aim is to limit the amount of gravel removed, and to confine dredging to that part of Shingle Bank least likely to be a crab wintering ground.

Preliminary studies at Shingle Bank have involved using divers, suspended cameras, and a remote observations vehicle (ROV).

Results from two plankton cruises in the English Channel in summer 1981 show that some crab larvae were present in the Royal Sovereign area that year, however, and it is hoped that a planned crab larval survey will describe and pinpoint eastern Channel crab larval populations in more detail. In the meantime local

fishermen have been asked to monitor their catches using log books in order to watch for any unexpected changes once gravel extraction begins.

3.3.2(e) Maërl and maërl infaunal communities

The commercial exploitation of marine calcareous algae for use as fertilizers and soil conditioners is based on deposits of the rhodolith forming members of the Corallinaceae which are collectively known as maërl. Interest is centred on deposits off the coast of France, England and Ireland where the algae are found in sufficient quantities to make commercial utilization worthwhile.

Small quantities of maërl have been dredged off the coast of France since at least the 19th century and in 1984 the amount had increased to 5.25×10^5 m³. No large-scale extractions have taken place off the coasts of either England or Ireland, although proposals to dredge for maërl are being considered in both countries.

Systematics And Structure

The two species which predominate in maërl deposits in southern boreal waters are *Lithothamnium corallioides* Crouan and *Phymatolithon calcareum* (Pallas) Areschoug.

Both species have a branching calcareous thallus or rhodolith which can vary considerably both in size and shape depending on age and exposure to water movement. Examples of the range of shapes which occur naturally are given in Cabioch (1970) and Blunden et al. (1975). The characteristic coloration of living maërl is a reddish-purple but the dead algae which form the basis of the material extracted for fertilizers turn a yellowish or greyish-white colour after they have been broken down and abraided by the sea.

Distribution

Maërl-forming species of algae are widely distributed throughout the North Atlantic (Adey and Adey, 1973) although they only occur abundantly in a rather limited number of areas where the environmental conditions are suitable. The main requirements for satisfactory growth would appear to be protection from heavy swell, relatively strong currents to prevent smothering by silt and lack of abrasion from waterborne particles (Cabioch, 1968; Adey and McKibbin, 1970). The limiting factor to depth distribution is the penetration of light for photosynthesis. As a result, in the relatively clear water of the Mediterranean deposits of maërl occur down to depths of 70m or greater (Jacquotte, 1962), whereas in the more turbid waters off the coast of Brittany maximum depths appear to be about 20m (Gautier, 1971).

The distribution of maërl banks around the Brittany coast of France is given in Figure 2, which is based on the more detailed map of Gautier (1971). These banks constitute the most important deposits in terms of commercial exploitation of maërl. More

detailed surveys of certain deposits around the coast of Brittany are given in Boillot (1961, 1964) and Cabioch (1968).

The distribution of maërl sediments around the United Kingdom has not been studied in any detail except for the deposits in the Falmouth area of the English Channel where commercially exploitable quantities have been found.

Maërl is only found on the west coast of Ireland (Figure 3) and licences to dredge for the material have been submitted for areas around Galway Bay. The distribution of calcareous sediments in Kilkieran Bay on the north shore of Galway Bay has been studied in some detail by Deeny (1975). It is the subject of ongoing research by B.Keegan, UCG, D.Minchin, Fisheries Research Centre and the Geological Survey. Offshore Canadian calcium carbonate resources were reviewed by Packer (1987).

Fauna Of Maërl Beds

The dominating factor which affects the animal community associated with maërl deposits is the natural condition of the algae. Deposits of dead material are in general much poorer both in numbers of species and numbers of individuals than the living maërl.

Cabioch (1968) in his study of the Channel fauna and their association with different sediment types suggested that the fauna of living maërl beds was sufficiently different from animal communities of other sediments to be considered as a separate and extremely rich biocoenosis. However, two communities were distinguished in maërl beds off the north Brittany coast and these bore resemblances to communities from other deposits in the western Channel. Deposits of Lithothamnium corallioides var. corallioides were associated with an endofauna typical of the Venus fasciata community whereas banks made up of L. corallioides var. minima contained a community typified by the Pista instata community of heterogeneous muds.

Keegan (1974) found a considerable variety of animal groups in association with deposits of *L. corallioides* var. *corallioides* in Galway Bay on the west coast of Ireland. The local characteristics of the deposit, that is the percentage of living or dead material, position in relation to currents and associated material such as mud, sand or shell, were important in determining the faunal community. However, the general pattern was consistent with the findings of Cabloch.

Rolfe (1976) in a brief survey of the Falmouth Bay maërl beds found the living material to be rich in animal life with over 3814 individuals of 25 species being obtained from the crevices of rhodoliths collected in a single 0.1m² box sample. Crustaceans and small bivalves dominated the samples examined.

In contrast, the dead maërl was relatively poor in numbers of species, although the coarse open matrix and varying amounts of 'fines' trapped within it was considered to demonstrate the 'specialized ecological habitat that maërl deposits provide'.

Effects Of Exploitation

The extensive banks of dead algae which form the commercially exploitable deposits are either formed beside the actively growing maërl, as off the coasts of Brittany and Ireland, or appear to be quite separate from the present-day growing areas, as in Falmouth Bay. In both cases the banks require strong currents for their formation and are the result of the collection of dead material over very considerable periods of time.

Replenishment of the banks is likely to be very slow, since maërl species have been observed to grow only about 1-2mm per year (Adey and McKibbin, 1970). Similarly, the formation of new plants occurs largely by the release of reproductive spores, in itself an infrequent and slow process.

In the long term the effect of dredging will be to exhaust all supplies of maërl within the extraction zone. When living maërl is closely associated with dead material, a rich and productive animal community will also be destroyed. The slow growth rate of the species means that replacement of the banks could not be expected in the foreseeable future.

3.4 Estimation Of Scale Of Effects And Consequences

The scale of effect of sediment extraction projects and corresponding consequences for marine life and fisheries is dependent on the environmental characteristics of the area (for example the wave and current climate, geology, turbidity, and bathymetry), the nature and extent of the extraction operation, and the time to recovery or for readjustment of the benthos.

In principle, an estimation of the scale of effects and consequences is possible for any given site-specific sediment extraction project. As with all marine resource impact assessments, the general approach is to identify those components of the ecosystem which may experience change as a result of the activity, and to conduct a consequence analysis to determine the effect of such changes. Thereafter, predictive models are used in an attempt to quantify any biological effects on the marine ecosystem and in particular on valuable resources such as fisheries. A final stage employed in some marine resource impact assessments is the assessment on the effects on other users of these resources such as fishermen. Such approaches have been used where economic assessments of damage or loss of resources have been necessary or where an activity may have a significant effect in a localized area such as sea reclamation projects which impinge on coastal shellfish fisheries.

There are no published examples of a complete assessment of any specific sand or gravel extraction project but in general the approach would identify:

- the effect of the project on any sensitive spawning areas, in particular discrete and concentrated grounds such as herring spawning grounds;
- 2. the loss of organisms in the extracted sediments;
- 3. the effect of deposition of fines lost from the dredger both in regard to:
 - (a) temporary water column effects of suspended fines on primary production;
 - (b) longer-term change in the character of the benthos;
- 4. the effect of (1), (2) and (3) above on other components of the ecosystem, and in this case on higher trophic levels in the food chain;
- the effects on the balance between deposition and erosion both in the area in question and in the surrounding areas.

While a number of techniques can be applied to numerically evaluate the scale of effects and consequences, it is important to stress that it is unlikely that effects on higher trophic levels in the food chain could be expected to be observed in practice against the background of environmental noise. Indeed,

if it were possible to do this then an immediate conclusion from such monitoring would be that the effects were of such magnitude as to present cause for concern.

Elsewhere in this document (Section 3.3.2) the risks posed to herring and sandeel populations from the extraction of seabed material in areas providing their spawning grounds are reviewed. An extreme case would be the complete destruction of a sensitive spawning area and the loss of eggs, juveniles and potential recruits to the fish stock that would otherwise be provided by this area. Given the discrete nature of the herring spawning grounds in the North Sea, an assumption that the loss of future recruits was in direct proportion to the spawning area lost could result in a significant predicted reduction in the size of spawning stock biomass in future years. Although such a simplistic assumption may be contested it nonetheless illustrates the sensitivity of localized spawning areas to this species. Licensing of such areas for aggregate extraction is to be resisted.

The overall immediate loss of biota in the extracted sediments can be approximated from the areal extent of extraction and analysis of biota in benthic samples representative of the area. While our understanding of the contribution of benthic organisms to the diets of other marine organisms such as demersal fish species is not sufficient to provide an accurate determination of effects of this loss through each component of the food web, it is usual to adopt a simple approximation for food chain efficiency and apply this to each trophic level of a simple food web model (see, for example, French and French, 1989). In some areas a proportion of the benthic biota lost may have a direct value to a commercial shellfish fishery (see below).

The effect of suspended fines to increased turbidity and hence lowered primary production in the water column can be approximated by a simple dispersion/settling model using averaged current data and any available particle size distribution data for the discharged fines. Primary production can be reduced accordingly or assumed void in the zone within which higher than background turbidity levels are predicted to occur. While again one can extrapolate the effects of loss of primary production through a simple food web model, it can be seen that with the available surface area of 575000 square kilometres in the North Sea the loss of primary production even over a few square kilometres during aggregate extraction operations will be negligible.

Again, the use of a simple dispersion/settling model will enable predictions of the extent of any change to the sediment character of the benthos brought about by the deposition of fines, which may similarly be extrapolated through a food web model.

Assessment of direct losses to fishermen arising from sand and gravel extraction activities depends entirely on the fishery concerned and the nature of effects on it. Extraction operations on a commercial shellfish ground may directly destroy potential catches that would otherwise be taken by commercial fishing on these grounds. Here an assessment would be made directly of the loss to the fishery and to the fishermen exploiting these grounds until full recovery was anticipated. With finfish fisheries the

plume of suspended fines does result in avoidance behaviour by some species. The loss argued by some fishermen in these circumstances is in the nature of a loss of access to traditional grounds rather than a direct loss of fish. The fish (like the fishermen) are merely redistributed elsewhere. In some circumstances fishermen know that a discrete area supports an important, local seasonal fishery of migrating fish. Any redistribution of fish or fishermen may have economic consequences for local vessels and the best approach in these circumstances is to time extraction operations so as to permit access to fishermen during this seasonal window. Annex 2 provides a worked example of the effects of aggregate extraction in the North Sea as a simple illustration of the method described above.

3.5 Fishing Activity (Trawling) As A Physical Impact

The trawling of fishing gear over the sea bed will alter the top layer of the bottom sediment causing certain changes to occur. In most cases the physical effects will remain visible for a relatively short period as the movement of the bottom current will flatten the trawl tracks. But the movement of the bottom gear (otter trawl or beam trawl) will also directly or indirectly influence the benthic fauna. The most obvious direct effect is caused by scraping of the various gear parts which are in direct contact with the bottom (e.g. underside of the trawl door, trawl shoes, groundrope, tickler and other chain arrays and, finally, the belly of the trawl with additional cod-end protection (chafers)). However, the pressure itself of the gear parts on the bottom during the process of sliding along the bottom can also exert an effect on the benthos. The penetration depth of doors and shoes will mainly be determined by the type of sediment and the critical relation between trawling speed and weight of the gear. Under normal fishing conditions the gear skims the sediment surface, the rigid part of the net as well as the netting material staying just on the bottom. In such circumstances the effect of the pressure on the bottom is negligible (the same pressure per cm2 as a bicycle tyre). It has been calculated that the pressure at a beam trawl shoe is $0.15 \, \text{kg/cm}^2$ and that of a tickler chain $0.11 \, \text{kg/cm}^2$ (a car tyre is about $0.8 \, \text{kg/cm}^2$).

In the past, it has been established that an otter trawl door digs into a soft bottom by about 8-10cm. The chain arrays (up to 15 chains) dig into a silty soft bottom by about 3cm. The effects of the increase of the total weight of, for example, the beam trawl as observed over the last twenty years is fully compensated by an increase in trawling speed (e.g. for beam trawl 7-8 knots). The increase in fishing speed in fact gave rise to the increase in weight of the beam trawl gear as it would have been impossible otherwise to keep the gear in full contact with the seafloor.

Contact of the gear upon the bottom will cause a number of effects. Fine bottom sediment will be resuspended. The mud clouds of a trawl are essential to its catching performance. The coarse fraction of the resuspended material will soon settle, but the fine fraction may only settle out after being transported some distance by bottom currents, depending upon the current velocity at the time. Another potentially harmful aspect is the possible release of reducing substances into the water column, especially in the coastal zone. The grain size distribution of the bottom sediment, may also alter due to the disturbance by the trawls. For example the so-called chain marks will remove and displace stones and other coarse material. Reefs of, for example, the worm Sabellaria may be entirely destroyed, even sufficiently so that recovery is impossible.

Four different aspects of the bottom disturbance caused by the trawl fisheries on benthic organisms may be recognised, the extent of each of which depends upon penetration depth of the gear, sediment composition of the bottom and fishing intensity:

(a) Direct destruction of benthic organisms and the crushing or damaging of organisms in and on the bottom.

Research in the seventies and before concentrated on this aspect of bottom trawling. Divers, film recordings, benthos samples (before and after fishing) were used. The influence of the number of tickler chains on the catch and damaged benthos was studied. The effects on fragile species, such as crab-like species, echinoderms and bivalves, was demonstrated. A positive side effect for fish was found, in that previously unavailable food was made available in the zone of disturbance created by the passing trawl.

(b) The resuspension of sediment (with or without harmful substances) by the trawl gear and resultant deposition of the fine material in areas with a low tidal current.

There is no information available on harmful substances released by bottom trawl gear. Additional mud clouds caused by fishing in areas where physical reworking of the substrate by currents or storms takes place hardly causes problems to the benthic fauna. The benthic organisms will be adapted to live under these circumstances. In areas with low current velocities however it is possible in theory that benthic organisms will be smothered by sediment deposition if they cannot excavate themselves.

(c) A change in the bottom structure of an area which will result in a different recolonisation pattern thereby resulting in a benthic community different in composition to that encountered before trawling operations began.

The effects on Sabellaria reefs (German Waddensea) caused by heavy chains, mentioned previously, is an example of this.

(d) A cumulative effect caused by frequent fishing in the same area, which may result in long-term changes in diversity, biomass and productivity of benthos.

Frequent disturbance of the bottom in a particular area will lead to an increase in mortality of benthic species as the more sensitive organisms will die. If all sensitive species in an area are killed the mortality will decrease. The diversity (the number of different species) in an area may be influenced as long lived, slow-growing species, disappear to be replaced by a few faster-growing, short lived species which can reproduce rapidly. German researchers have been able to demonstrate these changes in the marine ecosystem caused by human interference. After monitoring over a period of sixty years a shift in abundance and species composition could be demonstrated. From the twenties onwards a decrease in species numbers was observed of the slow-growing molluscs and crustaceans and an increase of the fast-growing polychaetes. Also a shift in dominance was recorded from more or less fragile, relatively slow reproducing epibenthic species towards fast-growing and reproducing infaunal species.

An indirect cause of long-term changes in benthic communities may perhaps be changes in fish growth and recruitment. In heavily fished areas an increase in growing speed of flatfishes has been observed, these species feeding especially on polychaetes. It is thought that in such areas more food has been made available for

flatfish species. Whether this is also linked with a decrease in food availability for other species has never been proven or demonstrated but this may also be the case.

The productivity of benthos in theory will in the first instance increase as older species are replaced by young individuals or the number of opportunistic species increase. But if the disturbance caused by fisheries increases, it is possible that even resistant species will not survive, thereby resulting in a decrease in productivity.

The relative seabed disturbance caused by various seabed activities is given in Table 1. It can be seen from these figures that the disturbance of the seabed by fishing activity is far larger than all the other seabed activities. Marine aggregate extraction disturbs 0.03% of the seabed annually in the North Sea whilst fishing disturbs of the order of 55%.

MANAGEMENT

4.1 Regulatory Practices

4.1.1 Legislation And Review Procedures

General comments and observations

Seven out of the eleven countries surveyed have more than one piece of legislation that applies to the extraction of minerals from the ocean. The existence of more than one piece of legislation within a country is most often because one act applies to territorial waters, and another to the continental shelf. These countries include:

- 1. Belgium - private extractions versus public extractions;
- territorial waters and continental shelf; Denmark
- France
- West Germany territorial waters and continental shelf;
- foreshore and offshore. Ireland
- 6. Netherlands territorial waters and dredging;
- 7. United States

It is interesting to note that in most countries (10 out of the 11 surveyed) there is specific legislation for the extraction of materials from the ocean; it is not simply a case of onland legislation being applied offshore.

In examining which countries solicited input from other government departments, private sector, etc. when making decisions on licensing or permitting for mineral extraction, the results are as follows:

Input from Government only: West Germany and Ireland; Input from Government and private sector: Belgium, Canada, Finland, the Netherlands, Sweden, the United Kingdom and United States;

No input: France;

Insufficient information: Norway and Denmark.

Eight of the surveyed countries may include specific terms and conditions relating to environmental or fisheries impact management in the extraction licence (eg environmental monitoring, compensation, rehabilitation). These countries are: Finland, Sweden, Denmark, West Germany, Netherlands, Belgium (except for public licences), the United Kingdom and the United States.

Summary of mining legislation

Countries reported
Belgium
Canada (proposed)
Denmark
Finland
France
Ireland
Netherlands
Norway
Sweden
United Kingdom
United States
West Germany

Countries not reported
East Germany
Poland
USSR

Belgium

Legislation

Law of June 1969 concerning the Belgian continental shelf

 Royal Decree on this act (15 May 1977) concerning measures on shipping, sea fisheries and the environment

Administrator
• For both legislations - Ministry of Economic Affairs, Mines
Department

Area of application

· Continental shelf, including territorial waters

Materials

Mineral and non-living resources of the sea bed

Review Procedures

Local and public involvement

Mining Department informs local authorities and organizations when a new location is identified

Role of other governments or authorities

- For private extractions the Mines Department has to ask advice from the Ministry of Public Health (including environmental section)
- Ministry of Agriculture and Fisheries

Ministry of Defence

 For defence extractions and for public extractions, which may be an order of magnitude larger than the private extractions, no advice is asked for

Terms and conditions

 Ministerial decree of the Ministry of Economic Affairs contains all the conditions and terms put forward by the other ministries, e.g. with respect to safety zones, taxes to pay, leaving spawning grounds, environmental monitoring (long-term).

Note: Extraction takes place only on top of sand banks and topography is generally restored naturally

Canada

Legislation

Proposed Ocean Mining Act

Administrator

Cooperative arrangements between federal and provincial governments

Area of application

All Canadian offshore and continental margin

Materials

All mineral resources, excluding hydrocarbons

Review Procedures

Local and public involvement

No information at present

Role of other governments or authorities

 Proposed consultations with federal and provincial offices of fisheries, environment, transport, defence, as well as private industry (e.g. fishing association)

Terms and conditions

 Environmental monitoring and compensation mechanisms will be examined under the proposed new legislation.

Denmark

Legislation

Raw Materials Act, 1987 and the Continental Shelf Act 1979

Administrator

 Ministry of the Environment and the National Forest and Nature Agency

Area of application

Inland areas and territorial waters

Materials

All sediments, including sand, gravel, peat and similar deposits

Review Procedures Terms and conditions

Ministry of Environment has put down rules regarding extraction. These rules have been in effect since 1 July 1989. The old system of general permits for sand and gravel extraction has been changed to apply only for limited areas and specified quantities. The permits can be extended with regulations concerning restoration. Transition regulations are in effect for earlier permits.

Environmental Appeal Board decides in conflict situations

Legislation

· Continental Shelf Act, 1971

Administrator

Ministry of Commerce

Area of application

· Continental shelf

Materials

All natural living and non-living resources

Review Procedures

Role of other governments or authorities

Ministry of Environment may make additional rules Ministry of Public Works may make additional rules (e.g. safety zones)

Finland

Legislation

Act on Soil Extraction; Water Act

Administrator

National Board of Water and Environment (part of the Ministry of Environment)

Area of application

State owned waters within the territorial sea and the area beyond to the median line (EEZ)

Materials

All sediments, including sand and gravel

Review Procedures

Local and public involvement

Company should consult local fishing organizations prior to dredging

Role of other governments or authorities

- Municipalities give permission for private and nearshore waters
- Permit from the Water Court is needed when a risk of environment deterioration is expected

Terms and conditions

- Monitoring is prescribed for sand and gravel extraction
- When problems arise, they are referred to the Water Court

France

Legislation

- Continental Shelf Law, 1968
- Related Decree, 1971

Administrator

Ministry of Industrial and Scientific Development (Mines Department)

Area of application

All continental shelf and territorial sea

Materials

All natural resources

Review Procedures

Terms and conditions

Extraction operations are small; no specific environmental regulations are required

Legislation

- Mineral Law, July 1976
- Various Decrees, 1980

Administrator

 Le Conseil Géneral des Mines, et Service Maritime de l'Équipment

Materials

All natural resources, excluding hydrocarbons

Review Procedures

No further information

Ireland

Legislation

· Foreshore Act

Administrator

Department of the Marine

Area of application

Foreshore (between high water mark and low water mark)

Materials

Intended for coastal protection

Legislation

Continental Shelf Act, 1968

Administrator

· Department of Energy

Area of application

Offshore below low water mark

Materials

Intended or hydrocarbons, but also applies to minerals identified under the Minerals Development Act, 1960.

The Mineral Development Act also administered by Department of

Energy is applied to mining operations onland Note: Discussions regarding changes to the existing legislation

are ongoing to combine various aspects into one piece of legislation for the offshore

Review Procedures

Local and public involvement

· Local authorities, planning boards under planning laws

 Fisheries and environmental interests are looked after by the Department of the Marine

Role of other governments or authorities

Monitoring of operations is licence-specific

Netherlands

Legislation

Sediment Extraction Act, 1965

Administrator

· Ministry of Transport and Public Works

Area of application

 Territorial waters (12miles) and inland, excluding the construction, change and maintenance of public works
 Materials

 All sediments including sand and gravel, but excluding oil and gas Note: A new extraction act is planned to be adopted within a few years which will also apply to the continental shelf

Review Procedures

Local and public involvement

- Local authorities, and local newspapers, 'Staatscourant'
 Role of other governments or authorities
- · Ministry of Agriculture, Nature Management and Fisheries

State Archaeological Survey

As a consequence of the General Provisions Act 1986 the Ministry of Housing, Physical Planning and Environmental Management becomes involved when an Environmental Impact Statement is to be drawn up (eg when the extraction area is larger than 500 hectares)

Terms and conditions

- Sand extraction for landfill or beach nourishment is prohibited landward of 20m isobath
- It may be prescribed to restore the entire area, or part of it, to its original state

Sea defence works do not need a licence

 Dredging is prohibited within a distance of 500m from the toe of the sea defence

Legislation

Regulation for Dredging, 1934

Administrator

· Ministry of Public Works and Transport

Area of application

Territorial waters and inland

Materials

All materials to be dredged

Review Procedures

No further information

Norway

Legislation

 Act 12: Scientific research and exploration for and exploitation of subsea natural resources other than petroleum resources

Administrator

Ministry of Industry

Area of application

All national waters

Materials

All natural resources excluding petroleum

Review Procedures

Local and public involvement

No information

Role of other governments or authorities

No information

Terms and conditions

 Activities must avoid disturbing shipping, fishing, aviation, marine fauna or flora, and submarine cables

Sweden

Legislation

Act on the Continental Shelf (3 June 1966)

Administrator

Geological Survey of Sweden (SGU)

Area of application

All public waters as well as sea areas outside of territorial limits

Materials

All natural resources, including sand and gravel

Review Procedures

Local and public involvement

Local fishery organizations, county administration, local municipalities, etc. are consulted prior to issuing the permit. Intent to conduct work is published in local papers.

Role of other governments or authorities

Swedish Environmental Protection Board

National Board of Fisheries

 Central Board of National Antiquities and the National Maritime Museum

National Swedish Administration of Shipping and Navigation

Swedish Meteorological and Hydrological Institute

Terms and conditions

Normally the Water Rights Court decides on an environmental monitoring programme. The court may also decide on financial compensation where appropriate. The SGU may withdraw the licence if the extraction has unacceptable detrimental effects.

United Kingdom

Legislation

Continental Shelf Act, 1964

Crown Estate Act, 1961

Administrator

Crown Estate Commissioner

Area of application

Territorial sea and continental shelf

Materials

All natural resources, except hydrocarbons

Review Procedures

Local and public involvement

Requires statutory review by Department of Transport, and non-statutory consultation process between government departments and other interested parties (including environment, coastal protection, fisheries, etc.). Consultation known as 'The Government Review Procedure' is administered by Department of the Environment

Terms and conditions

 Code of Practice is followed by dredgers and fishermen. The Code relates to working guidelines of both industries, and aims to increase liaison

 Environmental monitoring carried out by the Ministry of Agriculture, Fisheries and Food as required.

United States

Legislation

- Submerged Lands Act 1953 and the Outer Continental Shelf Lands Act 1953
- National Environmental Policy Act 1969
- Marine Protection, Research and Sanctuary Act 1976
- Other legislation including the Clean Water Act 1976 and the Rivers and Harbours Act 1899 may also apply depending on the mining location

Administrators

- Department of the Interior
- US Geological Survey
- Minerals Management Service
- US Environmental Protection Agency
- Department of Defense
- US Army Corps of Engineers

Area of application

- The OCS Land Act covers areas of the EEZ on the shelf beyond
 - 3 miles from shore
- The Submerged Lands Act applies within 3 miles of the shore which is the responsibility of the individual states.
- The Marine Protection, Research and Sanctuary Act provides protection against undue degradation of marine waters.

Materials • All mineral resources

Review Procedures

 Environmental Impact Statements are subject to review by relevant agencies, public notification and review and public hearings.

West Germany

Legislation

- Continental Shelf Declaration, 1964
- Act on Provisional Determination of Rights Relating to the Continental Shelf, 1964 (amend. 1974)

Administrator

- Inside Territorial Waters (3nm) Regional mines inspectors
- Outside Territorial Waters Chief Mining Board

Area of application

Continental shelf including territorial waters

Materials

All natural resources including sand and gravel

Review Procedures

Role of other governments or authorities

- Deutsches Hydrographisches Institut
- Provincial fishery offices when inside 2nm zone
 Federal Fisheries Research Centre when outside 2nm zone

Terms and conditions

 Environmental monitoring before, during and after the mining operation is part of the licensing procedure

- After extraction, the sea bed has to be restored to its former state
- Security bonds are posted Liability assurance in favour of the fishermen is prescribed

4.1.2 Scientific Considerations To Be Taken Into Account When Issuing Extraction Licences

As a basis for both the environmental impact studies and the monitoring programme carried out in connection with extraction operations a baseline study is needed before operations commence. This should contain all relevant information on the conditions of the area in question, such as the topography, geology, hydrography, bottom flora and fauna and other biological features of the area. This should be conducted in sufficient detail to ensure that any changes that may occur as a consequence of the extraction activities can be determined, and the environmental impact ascertained.

It is desirable that parts of the baseline study (eg hydrography, biology and sediment dynamics) include monthly as well as annual data where practicable. This may allow seasonal and longer term fluctuations to be determined (large variations are known to occur, for example, in data for stormy and calm years).

Conditions attached to the permit or licence for extraction operations should, where appropriate, include a requirement to carry out baseline studies. Such studies are useful in assessments of recovery following the cessation of dredging operations, or for ensuring the restoration of the seabed which may be a condition attached to the permit in some circumstances (eg where damage has occurred as a result of malpractice or bad management by the licensee).

Both the total quantity of material removed from the seabed and the extraction rate are important when considering the potential impact of aggregate dredging on the marine environment.

In terms of biological and chemical impact, however, the extraction rate is probably less important than the extraction technique. Trailing suction dredging will disturb a greater surface area of seabed which will nevertheless be able to re-establish similar populations of plants and animals if the surface sediment remaining is similar. Dredging from a stationary vessel will have a greater impact but in a localised area. The seabed between the dredging pits will remain relatively undisturbed but the pits may well be recolonised by a different community of plants and animals better adapted to the changed conditions. In areas with marked density stratification of the water column (eg the Sound) reduced conditions may occur in the bottom waters of the dredging pit as a result of limited circulation and organic material trapped within the pit. Such conditions have a negative impact on the bottom fauna. In such areas trailing suction dredging is preferable.

The impact of marine aggregate extraction on the chemistry of the seabed and the overlying water column will depend to a large extent on the amount and composition of fine material in the seabed sediment. Dredging techniques which involve the separation of material at sea will tend to have a greater impact on the adjacent seabed and water column than techniques which retain most of the cargo on board and discharge ashore. All suction dredging (fixed

or trailing) will involve outwashings from the cargo hold irrespective of whether screening is required to modify the natural proportions of sand or stone in the cargo. Grab or bucket dredgers do not lend themselves to screening or other onboard treatment and therefore loss of fines overboard is minimised.

The rate of extraction and total quantity removed is particularly relevant when the physical impact of marine aggregate dredging on the coastline is being considered. Coastal impact can be considered under two main headings.

- a. Seabed sediment movement
- b. Seabed topography
- a. Seabed sediment movement

In the highly energetic environment inshore of the wave breaker line seabed material is constantly being suspended and moved by the prevailing tidal and wind driven currents. Generally speaking larger particles are moved inshore towards the beach whilst smaller particles move offshore to calmer waters. However in periods of intense storms this general progression can be overturned and huge quantities of material removed or deposited on the beach in a matter of hours.

Water depth, wave height and sediment particle size are the critical factors relating to the movement of seabed sediments offshore. The deeper the water the less energy in any given wave reaches the bed; the lower the energy at the seabed the smaller the particle that will be moved. It is possible to develop reasonably accurate mathematical models which will predict seabed sediment movements under given wave conditions and water depth providing the model has been calibrated with field measurements from a reasonably similar environment. On the basis of the above it is possible to predict the impact of marine aggregate extraction on seabed sediment movement and hence the likely impact on the supply of sediment to the adjacent beaches.

For the Dutch sea defence policy and extraction plan model calculations were carried out for one location considered to be more or less representative of the Dutch situation. These calculations showed that the extraction of 0.2, 1.0 and 10 million $\rm m^3$ at the 16m and 20m isobaths (9km and 11km offshore) would have no direct effect on the coastline by changing current pattern and wave climate. Negative effects on the coastline due to landward migration of the dredged pits are not expected within a period of 200 years.

b. Seabed topography

Offshore sandbanks can play a major role in ameliorating the amount of wave energy reaching the adjacent coastline and the direction of this wave energy. Essentially the shallower the water over the crest of the sandbank and the nearer the sandbank to the shoreline the more important the sandbank is likely to be in protecting the adjacent coastline, particularly if it is in the path of the prevailing winds and hence waves. By the use of mathematical models it is possible to predict the effect of

changing the height of the sandbank both on the wave energy reaching the shore (refraction) and the direction of the wave energy (diffraction).

Using these mathematical models, the results of field studies and existing hydrographic information it is possible to predict the effect of the extraction of a given quantity of material and to determine whether it will have a significant impact on the adjacent coastline/beach profile.

4.2 Resource Use Planning

4.2.1 Resource mapping

Introduction

Throughout the world ever increasing demands are being made on the coastal and offshore marine environment as an exploitable resource. The growing interest in these activities has resulted in an increased risk for conflicts between the different modes of exploitation and conservation. The demand for more systematic coordination has increased, and there is also an increased need for better knowledge about the marine environment. Present day techniques allow accurate seabed mapping. During the last decade most nations have set up their own mapping programmes. However, there is, with some exceptions (eg the countries around the Baltic and North Sea), limited information exchange between different nations. Recently, however, the Western European Geological Survey's Sub-Group on Marine Geology has been established.

The following section describes seabed and mineral resource mapping activities in the ICES member countries. Information was gathered from questionnaires which were sent out to all members, but the response was rather low. As a consequence much information was compiled by individual Working Group members. Exploration of the marine environment by ICES member countries varies considerably in scope, nature and progress. In some countries seabed sediment mapping is well underway as an integral part of a composite geological mapping programme for the offshore area. In most cases the seabed sediment mapping shows lithological and other information that is of interest to the aggregate extraction industry. However, the quality, density and usefulness of the information varies from one country to another. In addition a trained geologist is often needed to fully digest and understand the possible implications and applications of the information contained in the seabed sediment maps. Mapping of marine aggregate resources is usually carried out either on an ad hoc basis or as a formal programme which usually trails far behind the seabed sediment mapping as a consequence of the greater detail required.

In other countries without systematic seabed sediment mapping or a well advanced resource mapping programme, emphasis has been put by the administrative authorities on ad hoc resource mapping projects to suit the consumer's needs. This approach has led to good quality results seen from the perspective of the aggregate extraction industry, but lacks the overview that would be needed for a thorough management of resources or a well founded extraction policy.

Review of the current state of seabed sediment and resource mapping programmes in ICES member countries

A brief review of the seabed sediment and resource mapping programmes of ICES member countries is presented below. Further details concerning staffing, equipment and budgets are given in Annex 3 along with information on relevant maps and reports which are available.

Belgium

In Belgium the Ministry of Public Health, represented by the Management Unit for the Mathematical Model of the North Sea in Brussels, is coordinating the mapping of the Belgian nearshore area which is being carried out amongst others, by the HAECON Corporation, Ghent, based on data from the Ministry of Public Works.

The same organization will also coordinate the future mapping of seabed sediments in the Belgian sector based on data from Ghent University, the Fisheries Research Station in Ostend, and others.

The Belgian Geological Survey in Brussels, a component body of the Ministry of Economic Affairs, is responsible for geological mapping which in the offshore area is carried out by/with the help of the Renard Centre of Marine Geology of the Ghent University and the HAECON Corporation. Early results were reported to the Ministry.

No special resource mapping is being done.

Canada

The Geological Survey of Canada (GSC) is carrying out a regular mapping programme within the 200nm zone. This is an area of about 1.6x10 cm. Reconnaissance mapping has been conducted in 30% of the area, a total of 10% having been mapped in detail. Bedrock reconnaissance maps have been made of 60% of the area and detailed geological maps are available of 20% of the area. A summary of these maps is presented in the 1989 DNAG volume at 1:1000000 scale. Individual areas have been mapped on varying scales: Scotian shelf 1:250000, Grand Banks 1:350000, Labrador shelf 1:300000 and south-east Baffin shelf 1:1000000.

Types of maps include bedform, seafloor, grain size, deposit thickness, formation, surficial bedrock, seabed features, trawler and fishing activities, hazards, iceberg scours, shallow gas, etc. There is not much interest from GSC in relating the mapping to surface resources but other organisations have published on resources. In general there is not much cooperative work with universities, but there is with for example the Canadian hydrographic services. As large vessels are used most mapping is carried out in deeper water. Thus there is a 'zone of ignorance' between 0 and 25m in water depth although this area is receiving more attention now, viz Fader (1988).

Denmark

In Denmark, the Marine Raw Material Survey of the Forest and Nature Agency is responsible for resource mapping in the territorial waters and on the continental shelf. Mapping is carried out as part of a general geological mapping programme. The seismic survey is made in a 2km x 5km grid followed by surface sampling and shallow corings. Mapping for raw materials is accompanied by biological and archaeological investigations.

Federal Republic of Germany

For a long time it has not been clear which organization was responsible for the geological mapping of the German sector of the North Sea.

At present the German Hydrographic Institute (DHI) is in charge of the mapping of surface and near-surface sediments while the Federal and State Geological Surveys are responsible for the study of the deeper geology. Some resource mapping has been carried out by these bodies. In addition Kiel University has published some maps of the seabed sediments of the Baltic on an ad hoc basis.

Finland

The Geological Survey of Finland (GSF) is responsible for and carries out the regular mapping programme of the Finnish continental shelf (in the Baltic Sea). Detailed sea-floor mapping started of the end of the 1970s and by 1983 a working routine was established.

France

In France the Bureau de Recherches Geologiques et Minières (BRGM) - the French Geological Survey - based in Orleans is responsible for geological mapping, both onshore and offshore.

IFREMER - the French Institute for Marine Research - in cooperation with various universities is in charge of offshore thematic maps.

German Democratic Republic: No information available as yet.

It is thought that the Institut für Meereskunde, Warnemünde is responsible for sea-floor investigations in the German Democratic Republic.

Greenland: The Geological Survey of Greenland, based in Copenhagen, is responsible for geological activities on the Greenland shelf. A recent publication provides a good overview of the Greenland shelf and includes references of preliminary mapping activies in the 1970s (see Appel and Kunzendorf, 1989). No data is presently available regarding the organization of the current mapping programme.

Iceland: No data is presently available regarding the organization of a mapping programme of the continental shelf around Iceland. Details of surficial sediments may however be obtained from the Icelandic Geological Survey, Reykjavik.

Ireland

The Geological Survey of Ireland (GSI), Marine Section, is responsible for and carries out the mapping of aggregates and

surface sediments within the continental shelf of Ireland. The resource-based mapping programme which started in 1976 is concentrated on the following topics:

- resources such as sand and gravel down to 20 fathoms depth along the south-eastern coast of Ireland. As well as producing its own map, GSI has cooperated with BGS and the results are included in the BGS maps of the area;
- offshore coal in the Kish Bank Basin east of Dublin. Some results from this work are included in the BGS maps;
- investigations on the south coast related to hydrocarbon exploration activities, where the GSI purpose is geochemical mapping and identifying suitable submarine routes for pipelines. The investigation area goes from lNm off the coast to about 10Nm offshore;
- 4. geological mapping in the Galway Bay area out to 11°W, with particular emphasis on the Quaternary history and the occurrence of paleo-shorelines. Techniques used are mostly geophysical but include some benthic sampling;
- for fisheries use thematic mapping (side-scan sonar) of fishing grounds NW Donegal (NW Ireland) on behalf of the Sea Fisheries Board of Ireland (BIM);
- mapping heavy mineral beach sand occurrences and their extensions offshore.

Netherlands

The Geological Survey of the Netherlands (RGD), a component body of the Ministry of Economic Affairs, is responsible for geological mapping, including resources assessments, both onshore and offshore. RGD started reconnaissance surveying of the Netherlands sector of the North Sea as early as 1968.

Systematic reconnaissance mapping at a scale of 1:250000 started in 1980 when RGD joined the British Geological survey in mapping the five sheets straddling the median line.

A systematic detailed mapping programme at a scale of 1:100000 was initiated in 1985. Emphasis is on sediment properties and resource potential. Initial surveys are concentrating on nearshore areas.

Mapping of exploitable sands and gravel for industrial use was formerly done by RGD on an ad hoc basis. From 1985-1988 mapping of the various types of (near) surface sands within a distance of 50km from the main seaports was done at the request of the North Sea Directorate of Rijkswaterstaat (Ministry of Transport and Public Works). Increased sand and gravel exploitation offshore would be in line with the national policy to put restrictions on further aggregate exploitation on land.

All mapping programmes are carried out in close cooperation with the North Sea Directorate of Public Works (Rijkswaterstaat) at Rijswijk which, amongst other things, provides the shiptime for the survey work.

Norway

The Geological Survey of Norway (NGU) is responsible for geological seabed mapping of the Norwagian continental shelf. The coastal

areas are mapped by NGU in parallel with the Quaternary land mapping programme. Further offshore the Norwegian Continental Shelf Research Institute (IKU) carries out the investigations, but NGU coordinates the mapping programme. The Norwegian Polar Institute carries out mapping in the Barents Sea and around Spitzbergen.

Poland

Organization of mapping programme: No data available

Portugal

Organization of mapping programme: No data available

Soviet Union

Organization of mapping programme: No data available

Spain

Organization of mapping programme: No data available

Sweden

The Marine Geology Division of the Geological Survey of Sweden (SGU), is responsible for and carries out the regular mapping programme of the continental shelf of Sweden. The programme started at the beginning of the 1970s, but was not established as a regular programme until 1982.

United Kingdom

The British Geological Survey (BGS), a component body of the Natural Environment Research Council (NERC) is responsible for the geological mapping of the UK, both onshore and offshore and also for any mapping of mineral resources. The offshore mapping includes 1:250000 scale seabed sediment maps of particular relevance to this working group.

Recently the BGS has been involved with a programme of marine aggregate resource mapping of selected areas around the British Isles.

United States

The US Geological Survey's Minerals Management Service (MMS) has specific responsibility for organization of the seabed mapping programmes. General marine mapping of bottom sediments using avaiable data is being done under the CONMAP Programme at a scale of 1:1000000. In the northeast the US Geological Survey has also conducted regional seismic surveys. The MMS has provided \$20000-\$30000 per year to individual state's geological surveys for local mapping or the analysis of existing vibrocores for heavy minerals. Many of the cores and surficial samples were collected in the early 1960s by the US Army Corps of Engineers, Coastal Engineering Research Centre For the Inner Constinental Shelf Sediments Programme, which was a general survey of offshore sand resources

for beach nourishment (eg Williams, 1981). Others were the result of a joint effort between the National Oceanic and Atmospheric Administration (NOOA) and the Woods Hole Oceanographic Institute in 1970 (eg. Schlee and Pratt, 1970). Still other samples were collected by diverse, local mapping efforts, some of which were conducted by NOOA (eg Freeland, 1981) or individual states (eg Bokuniewicz, 1979).

Conclusions

In the course of the compilation of this chapter the following points of interest have emerged:

- Not all countries appear to have a fully-fledged mapping programme.
- Few countries have advanced seabed sediment mapping programmes on scales more detailed than 1:100000.
- Resource mapping is generally lagging behind the seabed sediment mapping.
- There is some exchange of ideas regarding mapping procedures amongst ICES member countries. Especially around the North Sea there is a clear tendency towards harmonization.
- there is a clear tendency towards harmonization.

 Notwithstanding this exchange, continuous attention should be given to ways to standardize the various national mapping programmes and to correlate mapping results across median lines.
- programmes and to correlate mapping results across median lines.

 There is a need for an international seabed mapping group where harmonization and coordination of mapping programmes may be achieved and where information can be exchanged leading amongst other things to an improvement in survey techniques and presentation methods.

4.2.2 Beneficial Interactions

Although marine aggregate mining projects are scheduled to avoid conflicting uses, they have not been designed to provide beneficial interactions. A benefit has been realized in New York Harbour where mining has been done by fixed dredges to produce borrow pits. The pits were constructed in water less than about 8m deep and extended 3 or 4m below the ambient sea floor. Such pits have served to concentrate finfish, much like a fishing reef, and the recreational fishery has been attracted to the area. Finfish surveys were done by trawling at both borrow-pit sites and nearby sandy shoals (Pacheco, 1983; National Marine Fisheries Service, 1984; Conover, Cerrato and Bokuniewicz, 1985). Gut contents were also examined. Fish catches were consistently higher at the pit sites than at the shoal sites. Over a 12-month period, catches were about four times higher at the borrow pits. The causes of these differences are uncertain. The substrate in the pits was mud and the difference in substrate between the pits and the shoal may explain the differences in catch. Temperature, salinity, dissolved oxygen and benthic food sources were also considered but these parameters did not seem to control fish population in the pits (Conover et al., 1985).

It has also been recommended that disturbance of the sea floor by dredging may, under certain conditions, enhance benthic productivity and result in increases in commercial yields (Rhoads, McCall and Yingst, 1978). In finer-grained sediments disturbances, as caused by dredging, can result in high population

densities of colonizing organisms for short periods of time. Repeated disturbances might be used to maintain such a system in a state of continuous recruitment and high productivity which may serve as a food resource for commercial species (Rhoads et al., 1978). The conditions under which this would occur or the magnitude of any effect, however, have not been studied, so that any potential benefits due to this phenomenon are speculative.

4.3 Surveillance And Monitoring

4.3.1 Electronic Monitoring Devices

Marine mining activity should be monitored on a continuous basis to provide a permanent record which should be available to both the regulatory authorities and the mining company. The information provided will allow the regulatory authority to monitor the activities of the mining vessel to ensure compliance with specific conditions within the mining licence/permit and to investigate third party allegations of illegal dredging activities.

The mining company can make use of the information recorded by the Electronic Monitoring Device (EMD) to improve their management control of mining activities within licensed/permitted areas. Mineral resources are seldom distributed evenly throughout the licensed area. Detailed records of quality and quantity of minerals accurately located within the mining area will provide essential information for the efficient utilization of these resources.

The level of detail to which information is stored by the EMD will depend on the requirements of the individual regulatory authority and the mineral company's needs for management purposes. The degree of security of stored information will also be a matter for the individual regulatory authority. Generally the higher the level of security the more complicated the equipment and the more time-consuming the transfer of the data from the mining vessel to the regulatory authority. Minimum requirements for data storage should include:

- (a) the position of the mining vessel on a 24 hour basis according to an agreed level of accuracy;
- (b) the deployment of dredging equipment;
- (c) the operation of dredging equipment.

The frequency of recording will vary depending on the status of the vessel (eg. infrequent records when laid up at the dockside but frequent records when mining). The position to be recorded in latitude and longitude or other agreed procedures such as Decca, Loran or National Grid Reference. The position of the dredge pipe and the draghead should be continuously recorded in relation to the seabed and the sea surface.

The recording device will register whether the dredging device pumps are operating and whether aggregate or water is being pumped.

The above are considered to be the minimal requirements to enable the regulatory authority to monitor operation of the licence in accordance with any conditions attached to it. Additional information may be required at the discretion of the regulatory authority and/or the mining company in pursuance of its own management requirements.

In the summer of 1990 the UK will investigate trial operation of this type of equipment. Three major dredging companies will participate in the trial with a view to having the majority of the UK dredging fleet equipped with this system within 3 years. The Dutch Ministry of Transport and Public Works has already obtained encouraging results with these devices on dredging vessels.

4.3.2 Physical Monitoring

Physical monitoring of marine aggregate extraction sites is necessary for an number of reasons. Primarily it may:

- A. Ensure compliance with licence conditions. Licensed aggregate extraction is frequently dependent upon compliance with a range of conditions designed to:
 - protect the marine environment and the fisheries resources in the area concerned and ensure minimal conflicts of interest;
 - ensure avoidance of areas of the sea or sea floor already utilized in other important ways, eg busy shipping lanes, waste disposal sites and pipeline and cable routes;
 - prevent significant changes in the sediment transport regime and wave and tidal current conditions from taking place, which might have harmful consequences for the shoreline or seabed.

Typically these conditions take the form of constraints upon the area which may be dredged, the method of dredging, the time during which the dredging is permitted, the annual or total tonnage that may be extracted or the maximum thickness of substrate which may be removed.

Lastly, should complaints from fishermen be received or coastal erosion problems arise, despite compliance with the licence conditions, then it may be possible to evaluate the role of dredging in causing these by recourse to data generated by such surveys.

- B. Form an integral component of any impact assessment studies. Accurate delineation of extent and focus of dredging activity is of great importance in assessing the impact of a dredging operation upon benthic communities. This provides a basis for the interpretation of trends or patterns in any biological data that has been collected. In addition identification of the most heavily dredged parts of an extraction area allows a future biological or physical study to be targeted appropriately, thus maximizing the chances of distinguishing any impact caused by dredging from natural variations in benthic communities or substrate.
- C. Present information on natural variability and trends of seafloor sediments and conditions.
 Sand resources, especially, may be situated in areas with highly unstable seabed conditions. It is imperative to understand the natural development of the seabed in order to understand the dredging impact. It is important to check if there are unexpected changes to the major physical conditions during the

lifetime of a site, in particular changes to the overall depths of the site and to discrete topographic features such as banks or channels. Generally this monitoring should be done on an annual basis. However in sensitive areas with rapid natural changes in seabed topography it may be necessary to undertake more frequent surveys.

D. Further delineate aggregate reserves.

Many of the techniques employed in the physical monitoring of aggregate extraction areas (see below) are identical to those which are used when prospecting for marine aggregate reserves. Thus the data generated during monitoring may usefully supplement that obtained when prospecting and allow the quality and location of the reserves to be more precisely determined.

Physical monitoring surveys may employ one or more of the following techniques:

- A. Sidescan sonar. This technique relies on the oblique transmission of sound waves, perpendicular to the ship track, from a "fish" towed behind a vessel, and the subsequent receipt of signals reflected back from the irregularities on the seabed to build up an acoustic picture or sonograph of the sea bottom topography. In addition substrates of different types produce reflections of different strengths on the sonograph and may thus be distinguished, although sediment sampling is still generally required to calibrate each textural type.

 The sidescan sonar is most valuable in this context for displaying the location and size of dredged pits and tracks, thereby indicating the focus of dredging activity, and for illustrating the distribution of certain broadly different deposits.

 Echo sounding may usefully be employed in conjunction with the sidescan sonar to provide an accurate record of bathymetry.
- B. Sediment sampling. Surface sediment samples may be obtained by grabbing (Orange Peel Bucket, Day, Van Veen or Shipek) or, where larger samples are required, the deployment of large diameter vibrocorers or anchor or rock dredges. Direct sampling by divers is particularly useful when sampling within dredged pits or tracks because they have the ability to discriminate these features from the sea bottom (eg Dickson and Lee, 1973). Vibrocoring, vibrohammer coring, impact coring or rotary coring is generally required to provide sediment samples from depth to calibrate seismic sections (see below).

 Sediment sampling is a vital component of monitoring surveys as it provides evidence of substrate changes resulting from dredging and is essential in the interpretation of side scan records and biological data.
- C. Underwater video and still photography. Both of these techniques may be used in clear water to provide a qualitative description of the seabed including sediment type and dominant epibenthic species. The equipment can be used either remotely from a vessel or directly by divers. Photographs may also provide a quantitative record of these features.

D. Seismic and/or sub bottom profiling. This technique makes use of low frequency pulses projected from a ship-towed sound source towards the seabed where part of the energy penetrates into the substrate to be reflected back from various "geological" surfaces. The echoes are received in a hydrophone array towed by the survey vessel. Following proper amplification and filtering the results are displayed on a graphics recorder thus providing a permanent record of the cross-section of the sea bottom.

Profiling in this manner is useful for monitoring any changes in thickness of an aggregate researve and hence for determining if underlying beds, perhaps of different character from the reserve, are likely to be exposed.

4.3.3 Biological Monitoring

Biological monitoring provides the basic data for the assessment of impacts on the biosphere of man-made environmental changes. Monitoring changes in a vulnerable biological community of species at the site of impact is assumed to provide a measure of the severity of the impact. The benthos, because of its sedentary nature and location on the sea floor, is an obvious choice as a vehicle for biological monitoring of the short- and long-term effects of seabed mining. Macrofaunal life spans allow the integration of effects over a period of years while meiofauna respond to changes in the order of months.

In its most common application, biological monitoring is used to measure the rate of recolonization and establishment of a productive benthic community on a newly dredged sea bottom.

Immediately following dredging an area will be first settled by small short-lived species. Subsequent successional stages will consist of longer-lived forms. The time required to establish the final assemblage will depend on the type and stability of the sediment. Benthos on well-sorted fine to coarse sand subject to periodic storm-induced resuspension are retained in an early stage of succession. Under such conditions, sediments of this composition attain their final form quickly. Low-energy areas with fine-grained sediments can take as long as 10 years to reach the final stages of community succession (Rhoads and Germano, 1982). Aggregate extraction requires a product with a minimum amount of fine material, so fine sediments are dredged only for navigational purposes. The successful regeneration of a gravel assemblage on newly exposed substrate is also likely to take several years. For example, it may depend on the initial establishment of erect hydroid and bryozoan colonies on the upper surface of the stones during the first year. Associated fauna follow during the next several years as colonies mature (Rees, 1987).

The re-establishment of a benthic community similar to the original is dependent on that of a sediment surface of the same structure and composition as the original. As an example the physical properties of the sediment surface of the Hastings Shingle Bank after dredging have been described by Dickson and Lee (1972). The bottom was found to consist of a complex of pits and furrows filled with fine slurry which eventually composted into muddy sand. They concluded that, because of the infrequent movement of the shingle, it will be decades before the surface of the bank regains its

original configuration. The associated changes in the benthos were described by Shelton and Rolfe (1972) who proposed that the bottom of depressions formed by anchor dredging in this area may initially be colonized by a muddy sand fauna which is then replaced by a clean sand fauna as the finer fractions are washed out. The variability between the stations sampled on the Southwold area off the English east coast after dredging may indicate that the same process occurs here (G. Lees, pers. comm.). It has been suggested by Dickson and Lee (1973) that the use of trailer suction dredges, since their extraction depth is less and they cover a wider swathe than do anchor dredges, would leave the bottom less irregular.

Dredging operations will always increase the amount of fine material available for resuspension, producing effects beyond that of the dredging operation itself. An initial source of fine material is the outwash plume, while subsequent sources are the winnowing of fines from the newly exposed gravel during storm events. This latter source will continue until a stable lag deposit is re-established in equilibrium with existing current and wave energy. The fate of this material depends on net water movement. Its effects are biologically diffuse and, particularly in downstream areas, can be widespread. It will attenuate as the fines settle in low energy basins from which they can no longer be resuspended. The effect of suspended fine material is considered by Rees (1987) to be temporary on the Hastings Shingle Bank as it is rapidly removed as it enters the normal transport pathways under the influence of tidal currents and wave action.

Biological monitoring is not a very useful technique for assessing the effects of suspended sediment. Unlike recolonization rates where the gradient ranges from abiotic conditions to stable benthic communities, the effects of sediment load are sublethal and of low impact. It has not been possible to demonstrate the effects of increased turbidity caused by aggregate dredging. It is suggested by Millner et al. (1977) that the ambient turbidity in the Southwold area is sufficiently high as to mask any effects resulting from the discharge of outwash fines. In addition, it has been suggested that the effects of dredging are so widespread as to extend to the control area used (ICES, 1979). A control area must be free from the effects to be measured while at the same time be of the same sediment type and in the same water mass as the study area.

Benthic communities have been found to change suddenly in response to changed rates of organic input or abnormal winter temperatures (Buchanan and Moore, 1986). Also, benthic macrofauna are subject to variability in the survival of their larval stages that can result from environmental conditions far from both study area and control. Additional temporal and spatial variation can result from biological interactions (Eagle, 1975). The problems inherent in the use of benthos for environmental monitoring are discussed by Gray (1976).

Many techniques have been developed to measure differences between biological communities which result from man-made perturbations which could be applicable to the effects of dredging. The most widely used are diversity indices whose use and shortcomings are discussed by Green (1979), Routledge (1979) and Wolda (1981). With

the increased availability of computers, multivariate techniques and cluster analysis are being more often used. A dendrogram provides an excellent visual representation of community similarity. A good discussion on their operation and limitations can be found in Gould (1981).

All of the above noted methods require the sorting and taxonomic identification of samples. These are labour-intensive processes that result in a high cost per sample. The number of samples required may be reduced by sequential sampling (Jackson and Resh, 1989). Taxonomic identification may be eliminated by the use of allometric methods (Schwinghamer, 1988). This is particularly useful when it is desired to include the meiofauna because of the difficulties in taxonomy. Rhoads and Germano (1986) describe a rapid method of benthic monitoring of soft sediment by remote sensing that obviates the need for laboratory processing of large numbers of samples. Such an approach may be useful in identifying key locations for regular follow-up monitoring.

Beyond showing that a change has taken place in a benthic community, biological monitoring for suspended sediment does not directly address the cause and can only provide suggestions for further study. An alternative approach would be to estimate the total amount of suspendable sediment released along with its residence time and geographical distribution. Further studies on the responses of different marine communities to increased but sublethal levels of suspended sediment might provide more information on expected long-term effects.

5. CONCLUSIONS

Aggregate Dredging, Coastal Engineering and Related Activities in the Coastal and Shelf Environments of ICES

- 1. In some member countries such as Canada, extraction of marine aggregate is a minor industry but in most, the industry is well established and growing. Reserves are now recognized as finite and in some cases (eg. U.K. and the Netherlands) total depletion dates are being predicted.
- 2. Provision of aggregates from marine locations is an alternative to land based operations and therefore resolves a number of problems associated with those traditional sources. In some cases there are also advantages related to quality and availability as well as transport and delivery.
- 3. Major uses of marine aggregates include construction (where quality is acceptable), land reclamation, beach replenishment and island and reef construction in the offshore industry. Despite the general acceptance of marine aggregate extraction, there are concerns for related environmental damage and for conflict with other ocean space uses including fishing and shipping.

Effects of Extraction Activities on Living Resources and Fisheries

Physical Impacts

- 4. Substrate removal and alteration of the bottom topography, resulting in the destruction of its infaunal and epifaunal biota, is the most immediate consequence of dredging activity. The removal of a significant thickness of sediment by trailer suction dredging may cause a localised drop in current strength associated with the increase in water depth. This results in reduced competency of the bottom currents and hence the deposition of finer sediment. Infill of the dredged pits and furrows, except in areas of mobile sand, tends to occur very slowly. Fisheries interests are most seriously affected by the dredging process where spawning grounds coincide with the deposit to be mined.
- 5. The creation of a turbidity plume in the water column is associated with the dredging process. Its magnitude is related to the proportion of mud and silt in the aggregate and the natural turbidity of the water. The duration of the plume in the water column depends upon factors such as water temperature, salinity and the size range of the suspended material. Avoidance of the turbid area by visual feeders such as mackerel and turbot may occur. Alternatively, some fish species may be attracted to the area by the "odour stream"of crushed benthos. Similarly, primary productivity within the water column may be either increased or decreased depending on the ability of the feeding zooplankton to deal with the increase in nutrients and other suspended material.
- 6. Redeposition of fines from the turbidity plume will be concentrated within the dredging area but will also extend beyond it depending upon the current strength, water salinity and temperature and the grain size of the suspended material. The prime risk of redeposition is smothering of fish eggs on the

spawning grounds, such as those of the sandeel, and suffocation of filter-feeding benthos such as mussels.

7. Screening out of sand directly back to the sea floor may significantly alter the substrate and change a stable gravel bank into an area of mobile sand.

Chemical Impacts

8. The bulk of aggregates are sands and gravels which, because of their composition and low surface activity show little chemical interaction with the water column. The components of aggregates which may have some effect are the organic material and clays. The chemical effects are likely to be minor due to the very low organic and clay mineral content of the sediments. Also dredging operations are generally of limited spatial extent and short duration which further limits the chemical impact.

Biological Impacts

- 9. The impact of a dredging operation on a benthic community depends primarily upon the magnitude and duration of the operation and the mode of dredging employed. Recovery of the community afterwards is also influenced by the nature of the new sediment surface which is exposed or subsequently accumulates at the extraction site, the larval and adult pool of potential new colonisers and the nature and intensity of the stresses which the community normally withstands. Complete benthic recovery may take from one month to fifteen or more years.
- 10. Predictably the intensity of dredging operation influences the severity of its impact upon the benthic community. The more extensive the operation the greater the initial defaunation and the greater the immigration distance colonizing species must travel.
- 11. The mode of dredging affects the nature of the impact. The immediate effect of anchor dredging upon the seafloor and its biota is severe but localized whilst that of trailer dredging is less profound but more widespread. In general the latter method is to be preferred as it is more likely to leave the seafloor close to its predredging condition and hence more suitable for recolonization by the ambient fauna.
- 12. The nature of the new sediment which is exposed or subsequently accumulates in the extraction site after dredging strongly influences the structure and composition of the colonizing benthic community. Exposure or accumulation of a substrate resembling that which originally existed promotes recolonization by a similar bottom fauna. However, complete and rapid regeneration of a dredged aggregate deposit to its former state, on the north west European and North American shelf regions, tends only to occur in areas of mobile sand transport.

- 13. The pattern of recolonization may be similar to that which ensues after the abatement of organic pollution or severe storms. With the exception of certain errant epifaunal species or deep-burrowing biota which might display avoidance reactions to an oncoming draghead, dredging may result, initially, in complete defaunation within the dredged pits. The adult species most readily available to immediately colonize the newly exposed sediment will be mobile epibionts inhabiting adjacent undisturbed sediments. The potential for colonization through larval recruitment is less tightly constrained by proximity of undisturbed communities and the habits of the species concerned.
- 14. Recovery takes place readily in soft sediment communities in areas exposed to periodic disturbances which are often dominated by short-lived "opportunistic" colonizers. One study of the consequences of maintenance dredging upon such communities indicates that they are adept at readjustment to the impact of the dredging operation and so should be less severely affected by mining operations than those on more stable substrates.
- 15. The magnitude of the effect of sediment redeposition upon a benthic ecosystem depends largely on the nature of the indigenous fauna, the deposition rate and the increase in water turbidity relative to the region's natural turbidity. The impact upon the ecosystem has been observed to take one of four forms:
- (a) defaunation within the affected area is initially virtually complete, similar to that in the dredging ground itself, but recolonization progresses more rapidly
- (b) defaunation is less pronounced than on the dredging ground and recolonization is more rapid
- (c) species richness and abundance is enhanced in the area of sediment fallout
- (d) negligible effect is detected

Sensitive Species and Communities

- 16. The sandeel is a non-migratory species for which there are important fisheries in the North Sea, some coincident with gravelly substates, and which contributes to the diet of many commercially caught fish species. Sandeels lay their eggs on sand. Where aggregate extraction coincides with spawning grounds the eggs are therefore at risk either from smothering by outwash fines or by direct removal. Mature sandeels are also particularly vulnerable due to their habit of burying themselves in the sand at night.
- 17. The harmful consequences for the herring and its fisheries arise from the impact of the marine gravel industry dredging upon its spawning grounds. The majority of recruits seem to spawn on the parent ground, but the data are not conclusive. Nevertheless changes in the structure of the spawning ground caused by

dredging will negatively influence the return of herring to the spawning sites, and therefore their successful reproduction, to a high degree.

- 18. Whitefish and vendace in the northern Baltic Sea spawn on sand, gravel and pebble surfaces in water between 1 and 5m depth. The exact location of many spawning sites is unknown, but the coregonids are fished as intensively as the herring which spawn in similar areas. As a result, the impacts of dredging on these species would be comparable to those on the herring.
- 19. Stocks of the brown crab in the English Channel support important fisheries based at numerous ports in England, France and the Channel Islands. Since the eastern Channel is also now seeing an increase in requests for licences to prospect for, or extract, gravel a conflict of interest has arisen with fishermen over access to the seabed. As the eastern English Channel gravel beds support overwintering concentrations of crabs it has been accepted as an interim restriction on the development of the Hastings Bank reserve that dredging be confined to that part of the Shingle Bank least likely to be a crab wintering ground.
- 20. Marine calcareous algae (maerl) is used as fertilizer and soil conditioners. Interest is centred on deposits off the coast of France, England and Ireland. In the long term the effect of dredging will be to exhaust all supplies of maerl within the extraction zone. When living maerl is closely associated with dead material, a rich and productive animal community will also be destroyed. The slow growth rate of the species means that replacement of such deposits could not be expected in the foreseeable future.

Estimation of scale of effects and consequences

21. The scale of effect of sediment extraction projects and corresponding consequences for marine life and fisheries is dependent on the environmental characteristics of the area, the nature and extent of the extraction operation, and the time to recovery or for readjustment of the benthos. There are no published examples of a complete assessment of any specific sand or gravel extraction project but, as the report illustrates, quantitative assessments can and should be undertaken.

Impact of fishing activity

- 22. Trawling of fishing gear (otter or beam trawls) over the sea floor also directly or indirectly effects the benthic fauna, in the following ways:
- (a) Direct destruction of benthic organisms and the crushing or damaging of organisms in and on the bottom;
- (b) The resuspension of sediment (with or without harmful substances) by the trawl gear and the resultant deposition of fine material in areas with a low tidal current;

- (c) A change in the bottom structure of an area which may result in a different recolonization pattern thereby resulting in a benthic community different in composition to that encountered before trawling began;
- (d) A cumulative effect caused by frequent fishing in the same area which may result in long-term changes in diversity, biomass and productivity of the benthos.

Management

Regulatory Practices

- 23. In 9 of the 11 countries surveyed specific legislation governs the submarine extraction of minerals. Seven of these countries include in the licences specific terms and conditions related to environmental or fisheries impact management.
- 24. The total quantity of mineral removed from the seabed and the extraction rate are important factors affecting the potential impact of aggregate dredging on the marine environment.
- 25. The rate of extraction has less effect on the biological and chemical impact than the extraction technique utilized. Trailing suction dredging will disturb large areas of seabed, which will, however, be quite quick to re-establish former flora and fauna. Dredging from a stationary vessel will influence a localized area. The seabed between dredged pits will remain rather unaffected but the pits themselves will probably be colonized by a new community of plants and animals better adapted to the changed conditions.
- 26. The rate of extraction and the total quantity removed is relevant when evaluating the physical impact of marine aggregate dredging on the coastline. Water depth, wave height and sediment particle size are critical factors affecting movement of seabed sediments. With proper background information it is possible to predict the impact of marine aggregate extraction on seabed sediments and also its likely impact on the supply of sediment (eg to adjacent beaches).
- 27. Mathematical models can be used to predict the effect of altered seabed morphology on wave energy influencing adjacent shores. It is important to check that no unexpected changes occur during the life of the extraction site. Monitoring should be done on an annual basis. In specially sensitive areas, with rapid changes in seabed topography it may be advisable to undertake more frequent surveys.

Resource mapping

28. Most countries have gathered geological data from their offshore regions and many have recently developed offshore geological mapping programmes. The survey methods and techniques, mapping scales, information shown and progress of map publication is variable. Some countries (eg United Kingdom) are well advanced with the systematic mapping of their offshore areas.

- 29. Most countries which are involved with offshore geological surveys are producing maps showing the distribution of seabed sediments. This information is of interest to the marine aggregate industry but the detail shown, and the scale of the maps is often insufficient for accurate resource appraisal.
- 30. Resource mapping programmes have recently been developed by some countries resulting in the publication of maps and reports. Information is shown at varying levels of detail and 1:100000 is commonly the chosen map scale.
- 31. Data exchange and exchange of ideas concerning mapping procedures commonly takes place amongst ICES member countries. On occasion this has resulted in a joint publication of certain maps (eg between the British and Dutch Geological Surveys in the southern North Sea).

Beneficial Interactions

- 32. Although marine aggregate mining projects are scheduled to avoid conflicting uses they have not been designed to provide beneficial interactions. A benefit has however been realised in New York Harbour (USA) where the formation of borrow pits in the sea floor has served to concentrate finfish stocks at the pits.
- 33. Under certain conditions disturbance of the sea floor resulting from dredging activities may enchance benthic productivity and result in increased commercial yields. The manner in which this might occur and the magnitude of any effect have not been studied and so any potential benefits due to this phenomenon are speculative.

Monitoring

- 34. Marine mining activity should be monitored on a continuous basis to provide a permanent record which should be available to both the regulatory authorities and the mining company. The information provided will allow the regulatory authority to monitor the activities of the mining vessel to ensure compliance with specific conditions within the mining licence/permit and to investigate third party allegations of illegal dredging activities.
- 35. Minimum requirements for data storage by electronic monitoring devices should include:
- (a) the position of the mining vessel on a 24 hour basis according to an agreed level of accuracy;
- (b) the deployment of dredging equipment;
- (c) the operation of dredging equipment.

Additional information may be required at the discretion of the regulatory authority and/or the mining company in pursuance of its own management requirements.

36. Physical monitoring of marine aggregate extraction sites is necessary for a number of reasons. Primarily it may:

- (a) ensure compliance with licence conditions;
- (b) form an integral component of any impact assessment studies;
- (c) provide information on natural variability and trends of sea floor sediments and conditions;
- (d) further delineate aggregate reserves.
- 37. Physical monitoring surveys may employ a variety of techniques including sidescan sonar, sediment sampling, underwater video and still photography (used either remotely from a vessel or directly by divers) and seismic/sub-bottom profiling.
- 38. The benthos, because of its sedentary nature and location on the sea floor, is an obvious choice as a vehicle for biological monitoring of the short— and long-term effects of seabed mining. Macrofaunal life spans allow the integration of effects over a period of years while meiofauna respond to changes in the order of months. In its most common application in this field, biological monitoring is used to measure the rate of recolonization and establishment of a productive benthic community on a newly dredged sea floor.
- 39. Biological monitoring is less useful for assessing the effects of suspended sediment. Unlike recolonization rates where the gradient ranges from abiotic conditions to stable benthic communities, the effects of sediment load are sublethal and of low impact.
- 40. Many techniques have been developed to measure differences between biological communities which result from man-made perturbations which could be applicable to the effects of dredging. The mose widely used are diversity indices though certain shortcomings have been recognised in these. With the increased availability of computers, multivariate techniques and cluster analysis are being more often used. Dendrograms provide good visual representations of community similarity. All of these techniques require the sorting and taxonomic identification of samples. These are labour intensive processes that result in a high cost per sample. The number of samples required may be reduced by sequential sampling. Taxonomic identification may be eliminated by the use of allometric methods.

6. REFERENCES

- ADEY, W. H. and ADEY, P. J., 1973. Studies on the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Br. Phycol. J., 8: 343-407.
- ADEY, W. H. and McKIBBIN, D. L., 1970. Studies on the maërl species *Phymatolithon calcareum* (Pallas) nov. com. and *Lithothamnium coralloides* Crouan in the Ria de Vigo. Botanica Marina, 13: 100-106.
- ANDERSON, F. E. and MEYER, L. M., 1986. The interaction of tidal currents on a disturbed intertidal bottom with a resulting change in particulate matter quantity, texture and food quality. Estuar. Coast. Shelf. Sci., 22: 19-29.
- ANDERTON, R., BRIDGES, P. H., LEEDER, M. R. and SELLWOOD, B. W., 1979. A Dynamic Stratigraphy of the British Isles. George Allen & Unwin, London. 301pp.
- ANGLIN, C. D., MacINTOSH, K. J., BAIRD, W. F. and WERREN, D. J., 1987. Artificial beach design, Lake Forest, Illinois. Proceedings of Coastal Zone '87, Seattle, Washington, pp1121-1129.
- APPEL, P. W. U. and KUNZENDORF H., 1989. Possibility of offshore mineral deposits in Greenland waters. Mar. Mining, 8: 155-162.
- AUGRIS, C. and CRESSARD, A. P., 1984. Les Granulats Marins. Publications du Centre National pour l'Exploitation des Oceans. Rapports scientifiques et techniques, 51. 89pp.
- BALSAN, P. S. and HARRISON D. J., 1986. Marine Aggregate Survey Phase 1: southern North Sea. Brit. Geol. Surv. Mar. Rep., 86/38.
- BENNETT, D. B. and BROWN, C. G., 1983. Crab (Cancer pagurus) migrations in the English Channel. J. Mar. Biol. Ass. U.K., 63: 371-398.
- BLUNDEN, G., BINNS, W. W. and PERKS, F., 1975. Commercial collection and utilisation of maërl. Econ. Bot., 29: 140-145.
- BOILLOT, G., 1961. La répartition des sédiments en baie de Morlaix et en Baie de Siec. Cah. Biol. Mar., 2: 53-66.
- BOILLOT, G., 1964. Géologie de la Manche occidentale. Ann. Inst. Océan., 42. 220pp.
- BOKUNIEWICZ, H. J., 1979. Volume of sand and gravel reserves in the lower bay of New York Harbour. State University of New York, Marine Sciences Research Centre, Special Report No 32, Ref 79-16. 34pp.
- BOLSTER, G. C. and BRIDGER, J. P., 1957. Nature of the spawning area of herring. Nature, Lond., 179: 638.

- BONSDORFF, E., 1983. Recovery potential of macrozoobenthos from dredging in shallow brackish waters. Oceanologica Acta, Spec. Vol., Proc. 17th European Symposium on Mar. Biol., December 1983, pp27-32.
- BOUCHOT, G., CABIOCH, L., CAILLOT, A., CHARDY, P., CRESSARD, A., DESAUNAY,Y., GENTIL, F., KURC, G., PAILLE, A. et ENTREPRISE GAGNERAND, 1975. Effets des extractions de sables et graviers marins sur l'environnement et la pêche. Bilan des études effectuées depuis mars 1974 dans le cadre d'une exploitation expérimentale. ICES C.M. 1975/E:17. 7pp. (miméo).
- BOWERS, A. B., 1969. Spawning beds of Manx autumn herring. J. Fish Biol., 1: 355-359.
- BROWN, C. G. and BENNETT, D. B., 1980. Population and catch structure of the edible crab (Cancer pagurus) in the English Channel. J. Cons. int. Explor. Mer, 39: 88-100.
- BUCHANAN, J. B. and J. J. MOORE, 1986. Long-term studies at a benthic station off the coast of Northumberland.

 Hydrobiologia 142: 121-127.
- CABIOCH, L., 1966. Contribution à l'étude morphologique, anatomique et systèmatique de deux Mélobesiées: Lithothamnium calcareum (Pallas) Areschoug et Lithothamnium coralloides Crouan. Botanica mar., 9: 33-53.
- CABIOCH, L., 1968. Contribution à la connaissance des peuplements benthiques de la Manche occidentale. Cah. Biol. Mar., 9 (5) (Supplément): 493-720.
- CABIOCH, L., 1970. Le maërl des côtes de Bretagne et le problème de sa survie. Penn ar Bed, 63: 421-429.
- CAMERON, T. D. J., LABAN, C. and SCHÜTTENHELM, R. T. E., 1984.
 Flemish Bight, sheet 52°N-02°E, 1:250000 series, Sea Bed
 Sediments. British Geological Survey and Geological Survey of
 the Netherlands.
- COLLINSON, R. I. and REES, C. P., 1978. Mussel mortality in the Gulf of La Spezia, Italy. Mar. Poll. Bull., 9: 99-101.
- CONOVER, D., CERRATO, R. and BOKUNIEWICZ, H., 1985. Effect of borrow pits on the abundance and distribution of fishes in the Lower Bay of New York Harbor. State University of New York, Marine Sciences Center, Special report 64. 68pp.
- CRUICKSHANK, M. J. and HESS, H. D., 1975. Marine sand and gravel mining. Oceanus, 19: 32-44.
- DAAN, N., 1973. A quantitative analysis of the food intake of North Sea cod Gadus morhua. Neth. J. Sea Res., 6: 479-517.
- De GROOT, S. J., 1979a. An assessment of the potential environmental impact of large scale sand dredging for the building of artificial islands in the North Sea. Ocean Mgmt., 5: 211-232.

- De GROOT, S. J., 1979b. The potential environmental impact of marine gravel extraction in the North Sea. Ocean Mgmt., 5: 233-249.
- De GROOT, S. J., 1980. The consequences of marine gravel extraction on the spawning of herring, Clupea harengus Linne. J. Fish Biol., 26: 605-611.
- De GROOT, S. J., 1984. The impact of bottom trawling on benthic fauna of the North Sea. Ocean Mgmt., 9: 177-190.
- De GROOT, S. J., 1986. Marine sand and gravel extraction in the North Atlantic and its potential environmental impact with emphasis on the North Sea. Ocean Mgmt., 10: 21-36.
- De VEEN, J. F., 1978. Changes in North Sea sole stocks (Solea solea (L.)). Rapp. P.-v. Réun. Cons. int. Explor. Mer, 172: 124-136.
- DEBYSER, J. (Ed.), 1975. Les problèmes de l'environnement liés à l'exploitation des sables et graviers marins. Note technique, 51. Centr. National pour l'Exploit. des Océans. 11pp.
- DEENY, D. E., 1975. The sediments of Kilkieran Bay (Co. Galway) between Kilkieran and Dinnish Shoals. Thesis, Geology Dept., Univ. College, Galway, Ireland. 63pp.
- DEPARTMENT OF THE ENVIRONMENT (UK), 1975. Aggregates: the way ahead. Rep. of the Advisory Cttee on Aggregates. Chairman: Sir Ralph Verney. 223pp.
- DICKSON, R. and LEE, A., 1973. Gravel extraction: effects on seabed topography. Offshore Services, 6: 32-39, 56-61.
- DOREL, D. and MAUCORPS, A., 1976. Note sur la granulométrie des frayères de hareng en Manche orientale. ICES C.M. 1976/H:20.
- DRAPEAU, G., 1973. Sedimentology of herring spawning grounds on Georges Bank. ICNAF Res. Bull., 10: 151-162.
- EAGLE, R. A., 1975. Natural fluctuations in a soft bottom community. J. Mar. Biol. Ass. U.K., 55: 865-878.
- EDEN, R. A., 1975. North Sea environmental geology in relation to pipelines and structures. Oceanol. Int., 75: 302-309.
- EDWARDS, E., 1979. The edible crab and its fishery in British waters. Fishing News Books. 142pp.
- FADER, G. B. J., 1988. The fixed link crossing of Northumberland Strait: comments on seabed and shallow surface conditions and potential dredging opportunities. Dredging Seminar, Techn. Univ. Nov. Scotia. 13-15 December 1988. 19pp
- FOLK, R. L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. J. Geol., 62: 344-359.

l

- FREELAND, G., 1981. Surficial sediment of the New York Bight Apex area. Environmental Research Laboratories, Atlantic Oceanographic and Meteorological Laboratories National Oceans Survey, Washington DC.
- FRENCH, D. P. and FRENCH, F. W., 1989. The biological effects component of the natural resource damage model system. Oil and Petrochemical Pollution, 4: 125-163.
- FRIDRIKSSON, A. and TIMMERMANN, G., 1951. Herring spawning grounds off the south coast of Iceland during spring 1950. J. Cons. Int. Explor. Mer, 17: 172-180.
- GAUTIER, M., 1971. Le maërl sur le littoral de Bretagne. Cah. Océanogr., 23: 171-191.
- GIBBS, P. J., COLLINS, A. J. and COLLETT, L. C., 1980. Effect of otter prawn trawling on the macrobenthos of a sandy substratum in a New South Wales estuary. Aust. J. Mar. Freshwat. Res., 31: 509-516.
- GOULD, S. J., 1981. The mismeasurements of man. W. W. Norton and Co., New York. 344 pp.
- GRAY, J., 1976. Are marine base line surveys worthwhile? New Scientist 29: 219-221.
- GREEN, R. H., 1979. Sampling design and statistical methods for environmental biologists. John Wiley and Sons, New York.
- GUSHUE, J. J. and KREUTZIGER, K. M., 1977. Case studies and comparative analyses of issues associated with productive land use at dredged material disposal sites. Technical Report D-77-43. Environmental Effects Laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- GUTT, W. and COLLINS, R. J., 1987. Sea-dredged aggregates in concrete. Building Research Establishment Information Paper IP 7/87. July 1987. Building Research Establishment, Garston, Watford, England.
- HAMBLIN, R. J. O. and HARRISON, D. J., 1988. Marine Aggregate Survey Phase 2: South Coast. British Geological Survey Marine Report 88/31.
- HAMBLIN, R. J. O. and HARRISON, D. J., 1989. The marine sand and Gravel resources of the Isle of Wight and Beachy Head. British Geological Survey Technical Report WB/89/41C.
- HARDEN JONES, F. R., 1968. Fish Migration. Ch. 6: The Herring. Edward Arnold, London, pp86-143.
- HARRISON, D. J., LABAN, C. and SCHÜTTENHELM, R. T. E., 1987. Indefatigable, sheet 53'N-02'E, 1:250000 series, Sea Bed Sediments. British Geological Survey and Geological Survey of the Netherlands.

- HEMMINGS, C. C., 1965. Underwater observations on a patch of herring spawn. Scot. Fish. Bull., 23: 21-22.
- HILDEBRAND, S. F., 1963. Fishes of the western North Atlantic, family Clupeidae. Sears Foundation for Marine Research, Memoir, 1: 274-293.
- HILY, C., 1983. Macrozoobenthic recolonization after dredging in a sandy mud area of the Bay of Brest enriched by organic matter. Oceanologica Act. Spec. Vol. 'Proc. 17th European Symposium on Mar. Biol.', December 1983, ppl13-120.
- HOLME, N. A., 1983. Fluctuations in the benthos of the western English Channel. Oceanol. Acta, 1983, (SP): 121-124.
- HOWARD, A. E., 1982. The distribution and behaviour of ovigerous edible crabs (Cancer pagurus), and consequent sampling bias. J. Cons. Int. Explor. Mer, 40: 259-261.
- HUBBARD, B. S. and HERBICH, J. B., 1977. Productive land use of dredged material containment areas: international literature review. Center for Dredging Studies, Rep. 199. Texas A & M Univ., College Station, Texas.
- ICES, 1975. Report of the Working Group on Effects on Fisheries of Marine Sand and Gravel Extraction. Coop. Res. Rep., 46. 57pp.
- ICES, 1977. Second report of the ICES Working Group on Effects on Fisheries of Marine Sand and Gravel Extraction (Ymuiden, 9-10 December 1975). Coop. Res. Rep., 64. 26pp.
- ICES, 1979. Third report of the working group on the effects on fisheries of marine sand and gravel extraction. ICES CM 1979/E:3.
- ISMAIL, N. S., 1985. The effects of hydraulic dredging to control oyster drills on benthic macrofauna of oyster grounds in Delaware Bay, New Jersey. Int. Rev. Gesamt. Hydrobiol., 70: 379-395.
- JACKSON, J. K. and V. H. Resh, 1989. Sequential decision plans, benthic macroinvertebrates and biological monitoring programs. Environ. Manag., 13: 455-468.
- JACQUOTTE, R., 1962. Étude des fonds de maërl de Méditerranéé. Rev. Trav. Stat. mar. Endoume, 26: 141-235.
- JONES, R., 1954. The food of the whiting and a comparison with that of the haddock. DAFS Mar. Res., 1954, (2). HMSO, Edinburgh.
- KAPLAN, E. H., WELKER, J. R., KRAUS, M. G. and McCOURT, S., 1975. Some factors affecting the colonization of a dredged channel. Mar. Biol., 32: 193-204.
- KEEGAN, B., 1974. The macrofauna of maërl substrates on the west coast of Ireland. Cah. biol. mar., 15: 513-530.

- KUNZ, H., 1987. Shoreline protection of the East Frisian Islands of Norderney and Langeroog. Proceedings of Coastal Zone '87, Seattle, Washington, pp1082-1096.
- LABAN, C., CAMERON, T. D. J. and SCHÜTTENHELM, R. T. E., 1984. Geologie van het Kwartair van de Zuidelijke Bocht van de Noordzee (Geology of the Southern Bight of the North Sea). Meded. Werkgr. Tert. Kwart. Geol., 21: 139-154.
- LE GALL, J., 1935. Le hareng *Clupea harengus* Linné. I. Les populations de l'Atlantique Nord-Est. Ann. Inst. Océanogr., Monaco, 15. 215pp.
- LEE, A. J. and RAMSTER, J. W., 1976. Atlas of the Seas Around the British Isles. Tech. Rep., MAFF Fish. Lab., (20), 4pp., charts.
- LEE, A. J. and RAMSTER, J. W., 1981. Atlas of the Seas Around the British Isles. MAFF, Direct. Fish. Res. HMSO, London. 102pp.
- LEONARD, L. A., PILKEY, O. H. and CLAYTON, T. D., 1988. An assessment of beach replenishment parameter. Duke University, Durham, North Carolina, USA. Unpublished manuscript. 13pp.
- LUDWIG, G. and FIGGE, K., 1979. Schwermineralvorkommen und Sandverteilung in der Deutschen Bucht. Geol. Jb., D32: 23-68. 10 Ktn, Hanover.
- McARDLE, P. and KEARY, R., 1986. Offshore coal in the Kish Bank Basin: its potential for commercial exploitation. Geol. Surv. Ire., Rep. Ser. 86/3.
- McCALLISTER, P. and KAVALAR, R. J., 1982. Confined disposal program for polluted maintenance dredged in the Great Lakes. Proc. Oceans '82 Conf. Mar. Tech. Soc., Inst. Electrical and Electronics Engineers, and the Council of Ocean Eng., Washington DC. pp1042-1045.
- McCAULEY, J. E., PARR, R. A. and HANCOCK, D. R., 1977. Benthic infauna and maintenance dredging: a case study. Wat. Res., 11: 233-242.
- MACER, C. T., 1966. Sand eels (Ammodytidae) in the south-western North Sea, their biology and fishery. Fishery Invest., Lond., Ser. 2, 24 (6): 1-55.
- MILLNER, R. S., DICKSON, R. R. and ROLFE, M. S., 1977. Physical and biological studies of a dredging ground off the east coast of England. ICES C.M. 1977/E:48.
- NAGALHUSKANAM, A. K., 1964. On the biology of the whiting (Gadus merlangus) in Manx waters. J. mar. biol. Ass. U.K., 44: 177-202.

- NATIONAL MARINE FISHERIES SERVICE, 1984. Seasonal occurrence of finfish and larger invertebrates at eight locations in Lower and Sandy Hook Bays, 1982-83. Rep. to NY District, U.S. Army Corps of Engineers. 79pp.
- NIESSEN, A. C. H. M., 1986. Kartering van winbare zandsoorten in het kustgebied van de Noordzee (Mapping of exploitable sand types in the nearshore areas of the Netherlands North Sea).

 4pp., 5 maps. In: Regionaal Ontgrondingenplan Noordzee (Regional aggregate exploitation plan for the Netherlands North Sea). Rijkswaterstaat, Directie Noordzee, Rijswijk.
- NIESSEN, A. C. H. M. and SCHÜTTENHELM, R. T. E., 1986. Oppervlaktedelfstoffen (Raw materials at or near the surface). Rijks Geologische Dienst, Haarlem. Map.
- NUNNY, R. S. and CHILLINGWORTH, P. C. H., 1986. Marine dredging for sand and gravel. HMSO, London. 193pp.
- OULASVIRTA, P., RISSANEN, J. and LEHTONEN, H., 1987. The effects of marine sand extraction on fisheries and the benthic macrofauna. Rep. of the Working Group on Marine Sand, Min. of Env. Ser. C/23/1987, pp141-195 (In Finnish).
- PACHECO, A. L., 1983. Seasonal occurrence of finfish and larger invertebrates at three sites in lower New York Harbor, 1981-1982. Rep. to NY District, U.S. Army Corps of Engineers by NOAA-NMFS, Northeast Fisheries Center, Sandy Hook Laboratory, Highlands, New Jersey. 49pp.
- PACKER, T., 1987. Canadian offshore calcium carbonate: an assessment of development potential. Ocean Mining Report, Ocean Mining Division, EM&R Canada. 60pp.
- PALERMO, M. R., SHIELDS, F. D. and HAYES, D. F., 1981. Development of a management plan for Craney Island disposal area. US Army Corps of Engineers, Waterways Experiment Station, Tech. Rep. EL-81-11. 170pp.
- PANTIN, H., 1988. Seabed sediments around the United Kingdom. Brit. Geol. Surv., Offshore Reports 2.
- PARRISH, B. B., SAVILLE, A., CRAIG, R. E., BAXTER, I. G. and PRIESTLEY, R., 1959. Observations on herring spawning and larval distribution in the Firth of Clyde in 1958. J. mar. biol. Ass. U.K., 38: 445-453.
- PILKEY, O. H. and CLAYTON, T. D., 1988. Beach replenishment the national solution? Proceedings of Coastal Zone '87, Seattle, Washington, pp1408-1419.
- POINER, I. R. and KENNEDY, R., 1984. Complex patterns of change in the macrobenthos of a large sandbank following dredging.
 1.Community analysis. Mar. Biol., 78: 335-352.
- POSTUMA, K. H., SAVILLE, A. and WOOD, R. J., 1975. Herring spawning grounds in the North Sea. ICES C.M. 1975/H:46.

- POSTUMA, K. H., SAVILLE, A. and WOOD, R. J., 1977. Herring spawning grounds in the North Sea. ICES Coop. Res. Rep., 61: 1-16.
- RAE, B. B., 1967. The food of cod in the North Sea and on west of Scotland grounds. DAFS Mar. Res., 1967, (1). HMSO, Edinburgh.
- REES, H. L., 1987. A survey of the benthic fauna inhabiting gravel deposits off Hastings, southern England. ICES C.M. 1987/L:19.
- REINECK, H.-E. and SINGH, I. B., 1980. Depositional sedimentary environments. Springer-Verlag, Berlin, 2nd ed. 551pp.
- REISE, K., 1982. Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: are polychaetes about to take over? Neth. J. Sea Res., 16: 29-36.
- RHOADS, D. C., McCALL, P. L. and YINGST, J. Y., 1978. Disturbance and production on the estuarine seafloor. American Scientist, 66: 577-586.
- RHOADS, D. C. and GERMANO, J. D. 1982. Characterisation of organism sediment relations using sediment profile imaging: An efficient method of remote ecological monitoring of the sea floor (Remots TM System). Mar. Ecol. Progr. Ser., 8: 115-128.
- RHOADS, D. C. and GERMANO, J. D. 1986. Interpreting long term changes in benthic community structure: A new protocol. Hydrobiologia. 142: 291-308.
- RIESEN, W. and REISE, K., 1982. Macrobenthos of the subtidal Wadden Sea: revisited after 55 years. Helgolander Meeresunters., 35: 409-423.
- ROLFE, M. S., 1976. Notes on *Lithothamnium* in the River Fal estuary, with particular reference to living rhodoliths on St Mawes Bank. Unpub. rep., Fisheries Lab., Burnham-on-Crouch.
- ROUTLEDGE, R. D., 1979. Diversity indices: Which ones are admissible? J. Theor. Biol., 76: 503-515.
- RUNNSTRÖM, S., 1941. Quantitative investigations on herring spawning and its yearly fluctuations at the west coast of Norway. Fiskeridir. Skr. Havunders., 6 (8). 71 pp.
- SCHLEE, J. and PRATT, R. M., 1970. Atlantic Continental Shelf and Slope of the United States - gravels of the northeast part. US Geological Survey Professional Paper 529-H. 39pp
- SCHÜTTENHELM, R. T. E., 1980. The superficial geology of the Dutch sector of the North Sea. Mar. Geol., 34: 27-37.
- SCHWINGHAMER, P., 1988. Influence of pollution along a natural gradient and in mesocosm experiment on biomass size spectra of benthic communities. Mar. Ecol. Progr. Ser., 46: 199-206.

- SHELTON, R. G. J. and ROLFE, M. S., 1972. The biological implications of aggregate extraction: recent studies in the English Channel. ICES C.M. 1972/E:26.
- STEELE, J. H., 1965. Notes on some theoretical problems in production ecology. Mem. 1st Ital. Idrobiol. Dott. Marco de Marchi 18 Suppl., pp383-398.
- TIBBO, S. N., SCARRATT, D. J. and McMULLON, P. W. G., 1963. An investigation of herring (Clupea harengus L.) spawning using free-diving techniques. J. Fish. Res. Bd. Can., 20: 1067-1079.
- VAN DER VEER, H. W., BERGMAN, M. J. N. and BEUKEMA, J. J., 1985. Dredging activities in the Dutch Wadden Sea: effects on macro-benthic fauna. Neth. J. Sea Res., 19: 183-190.
- VINK, J. S. L., 1988. Bijdrage Milieu effect rapportage Zandwinning Noordzee, onderdeel waterkwaliteit. Rijkswaterstaat, Dienst Getijdewateren, Notitie GWWS 88.256. 's Gravenhage. 15pp. (in Dutch).
- WANG, H., 1988. Short course on principles and applications of beach nourishments, Chapter 1 (T. Campbell, R. Dean, A. Mehta and H.Wang, Eds.). Dept. of Coastal and Oceanographic Engineering, Univ. of Florida. 28pp.
- WIERSMA, J. and SCHÜTTENHELM, R. T. E., 1984. Grindvoorkomens in het Klaverbankgebied. IRO-Journal, 8 (51/52): 1-2.
- WILDISH, D. J., 1977. Factors controlling marine and estuarine sublittoral macrofauna. Helgolander Meeresunters., 30: 445-454.
- WILLIAMS, M. L. and KANA, T., 1987. Beach nourishment at Myrtle Beach, South Carolina: an overview. Proceedings of Coastal Zone '87, Seattle, Washington, DC, pp1106-1120.
- WILLIAMS, S. J., 1981. Sand resources and geological character of Long Island sand. Coastal Engineering Resource Centre, US Army Corps of Engineers, Technical Paper No 81-3, Fort Belvoir, Virginia. 65pp.
- WINDOM, H. L., 1976. Environmental aspects of dredging in the coastal zone. Critical Rev. environm. Control, 6: 91-110.
- WINSLADE, P., 1974. Behavioural studies on the lesser sand-eel, Ammodytes marinus (Raitt). II. The effect of light intensity on activity. J. Fish Biol., 6: 577-586.
- WOLDA, H. 1981. Similarity indices, sample size and diversity. Oecologia, 50: 296-302.

Annex 1. Code of Practice for the Commercial Extraction of Marine Minerals

CODE OF PRACTICE FOR THE COMMERCIAL EXTRACTION OF MARINE MINERALS

I INTRODUCTION

This code of practice is intended to promote a good ethic of operation thereby helping to ensure that the dredging industry exists in harmony with fisheries and other ocean space users. These guidelines are intended to provide a flexible framework that any country could adapt to its own regulatory system.

The following code of practice provides step-by-step advice on how marine dredging should be conducted in order to minimize conflicts with other users of the sea. Specific consultation procedures with respect to fisheries are outlined in Appendix I. Because of radical differences in approach by each country, this generalised code of practice is not intended to apply to navigational dredging. These recommendations relate to prospecting and extraction of sand and gravel, phosphorite, placer minerals and waste coal.

The guidelines will ensure that sufficient information is produced to enable an environmental impact assessment, covering the effects of the proposals on other interests including fisheries, to be carried out and an environmental impact statement to be produced as necessary.

II PROSPECTING GUIDELINES

- All potential conflicts between marine mining and other sea users and interest groups (government and nongovernment) should be identified by the regulatory authority.
- 2. Prior to issue of the Prospecting Licence the proponent should consult with groups identified in (1). It should be the responsibility of the regulatory authority to identify areas of particular sensitivity (e.g. herring spawning beds, marine conservation areas, archaeological sites, pipelines and cables) before any prospecting activity proceeds. The regulatory body must ensure that appropriate prospecting techniques be adopted.
- The Regulatory Authority should assure that an appropriate multi-level liaison network is established to permit timely decision making at all stages of the exploration/development programme.
- 4. Full details of the proposed prospecting programme should be submitted for approval to the regulatory authority. There must be provision for a conflict resolution procedure in which the regulatory authority, the company, the fishery and other interests participate. The exact procedure will depend on national requirements.

4

5. Prospecting should cover the whole area licensed for exploration in order to provide a complete picture of the geological setting. All prospecting information compiled by industry should be submitted to the regulatory authority. Normal commercial confidentiality considerations should apply.

Details of a prospecting license will vary according to the requirements of the individual regulatory authority, however, the following elements are recommended for inclusion:

- 1. Identification of target commodities
- 2. Duration of licence
- Whether the license is exclusive or allows shared access to the prospecting area
- Location of prospecting area (geographical coordinates)
- Types of prospecting techniques to be used, e.g. hydroacoustic methods, dredging, grab sampling or coring.
- Details of the Prospecting Programme (e.g. timing and duration, vessel characteristics, geophysical line spacing, number and location of sample sites, volumes of material to be recovered, sample processing plans)
- 7. Licensing fees
- 8. Notice to other marine users
- Liaison arrangements with other sea users and interest groups as identified in Section II.1.

An example of a guideline for consultation or liaison with fisheries interests is given in Appendix I. Similar guidelines could be devised for other interest groups (e.g. conservation, navigation, military).

III MINING GUIDELINES

Applicants for mining licenses should submit outline proposals for informal discussions with the regulatory authority. The authority should undertake consultations with the following bodies as appropriate:

- a) Wildlife/conservation/environmental
- b) Fisheries and mariculture
- c) Defence
- d) Energy
- e) Navigation and harbour authorities
- f) Coastal protection
- g) Engineering and construction works (e.g. cables and pipelines, sewer outfalls)
- h) Littoral councils (local planning authorities)

- i) Recreation/amenity interests
- j) Waste disposal authorities

These consultations should include all relevant government and non-government organizations and interest groups. The proposal should be published in the press, indicating where relevant information can be obtained and providing an administrative address for all representations. All consultees should be informed of the outcome of the consultations and the decision of the regulatory authority.

The regulatory authority should consider all representations received from consultees on the outlined proposals. Discussions and negotiations should take place as appropriate. A report should be prepared which sets out the proposals, the representations which have been received from those whose interests might be affected and possible mitigating measures. This report should summarize the arguments for and against the proposal to provide a balance on which the merits of the proposal can be judged by the regulatory authority. If appropriate the regulatory authority may decide that a formal environmental impact assessment should be made in order to form the basis of a balanced decision.

Details of a mining licence will vary according to the requirements of the individual regulatory authority, however, the following elements are to be recommended for inclusion:

- The type of commodity(s) to be mined
- Period of licence and provisions for premature termination of licence.
- The licence should specify whether or not the permit for extraction is assignable, exclusive or non-exclusive.
- Location of the licensed area (by coordinates) for extraction and additional area for manoeuvring where there would be no compensation for loss of fishing gear.
- 5. Total quantities permitted for extraction/processing within the period of the licence. The point of measurement should be specified in the licence (for example, whether in the hopper or when landed). Extraction rates over specified time intervals could also be included, for example an annual extraction limit rather than a total amount.
- The minimum water depth for extraction should be stipulated where necessary, and a maximum permitted sediment depth of extraction could be included where appropriate.

- The licence should contain a requirement to leave behind a substrate of specified composition (in most cases this will be similar to that which existed before extraction).
- 8. The methods of dredging must be detailed in the licence.
- The licence should specify whether screening or other forms of processing may be carried out and if so where.
- 10. An appropriate programme of effects monitoring should be agreed and incorporated into the licence.
- 11. There should be surveillance to ensure that amounts stipulated by the licence are not exceeded, areas not transgressed, and physical conditions complied with. In this regard, the licence should provide for access and onboard/on-site inspection by an appropriate authority to the dredger's log, company's records, etc..
- Appropriate means of ensuring compliance (i.e. electronic monitoring devices) should be addressed by the regulatory authority.
- 13. The statutory authority should stipulate a minimal navigational standard on the dredging vessel.
- 14. The dredging company must supply regular returns of quantities extracted to the appropriate authority.
- 15. The licence should include provision for seasonal or temporal restrictions, including the suspension of dredging where appropriate.

APPENDIX I: GUIDELINES FOR FISHERIES CONSULTATIONS

These guidelines provide a framework for the information exchange required during consultations. Regulatory authorities should ensure that all appropriate topics have been addressed in sufficient detail to enable them to make an informed decision about the license application and any conditions necessary to protect fisheries interests. It is anticipated that dredging information will be supplied by the mining company and fishery information will be supplied by the fishing authorities.

- 1. Dredging information
- a) Specific area specific coordinates must be supplied, detailing the area for practical exploitation of the resource, taking into account manoeuvering of the dredging vessel.
 - larger areas for extraction may be zoned into smaller strips for extraction on an agreed time scale. This could relate to seasonal fishing patterns and the need for general access by others.
 - extraction areas could be marked/buoyed to assist identification at sea.
- b) Types of dredger should be specified in the application.
- c) The application should specify as far as possible the details of dredging activity to enable assessment of the level of disturbance likely to occur.
- d) The application should detail routes to and from the dredging site, especially in areas where there is particular potential for conflict.
- e) There should be a requirement on how the mining area must be left after extraction.
- f) Maximum thickness of sediment which can be taken should be specified.
- g) Siltation from outwashing, level of screening, and quality of fines discharged should be indicated.
- h) Life time of the resource and rates of extraction should be estimated
- Provisions should be made for regular review of this information and revision of the work plan.

2. Information on the fishery resource and the intensity of fishing activity $\ensuremath{\mathsf{I}}$

Information on the following points should be provided:

- a) Location of spawning grounds and the identification of spawning seasons
- b) Sensitive nursery areas
- c) Location of shellfish beds
- d) Feeding grounds of finfish and crustaceans and cephalopods
- e) Migratory routes of crustaceans and finfish and cephalopods
- f) Number of fishermen and vessels fishing the areas
- g) Type of gear used (e.g. potting, long-lining, fixed nets, trawls, drifting nets, etc.)
- h) Areas and periods of intense fishing activity
- Points of contact with fishery organisations (e.g. government authorities and local fishermen associations')
- j) Size of the catch per species
- k) Routes used to and from fishing grounds

APPENDIX II: PROSPECTING LICENSES - GUIDELINES ON LIAISON WITH FISHING INTERESTS: An Example from the United Kingdom

Regulatory Authority (RA) Action

- agree in principle with applicant on prospecting area
- obtain comments from Government Fisheries Authority (GFA)
- advise applicant of GFA comments
- issue formal offer letter to licensee

Mining Company Action

- obtain RA approval of the technical elements of their prospecting programme
- prepare detailed plan of prospecting including:
 - areas, dates, activities
 - name and contact telephone number of mining company liaison representative who will be onboard the prospecting vessel
- supply RA and GFA with copy of prospecting plan at least 4 weeks prior to start
- obtain from RA and GFA the names of fisherman associations to consult
- at least 2 weeks prior to start, agree with fisherman associations a liaison person who will be the channel through which all exchange of information on the prospecting activity will take place, and

agree/establish communication links between all parties concerned

- visit prospecting site with local fisherman to establish the exact location of fishing gear
- inform RA and GFA in writing of liaison arrangements and prospecting plan at least 10 days prior to start of prospecting
- 4 days before start, confirm prospecting plan with liaison person in writing with copies faxed to RA and GFA
- during prospecting provide daily reports to liaison person
- at end of prospecting activities, advise RA and GFA by fax within 24 hours

Annex 2: Illustration of Estimation of Scale of Effects and Consequences

A worst case overview for North Sea sediment extraction activities is presented below based on the calculations of one member of the Working Group. It is included here as an example calculation rather than an authorative quantification of effect.

- 1. Assume that $35 \times 10^6 \text{m}^3$ of sediment is extracted annually. If the extraction depth is only 20cm (worst case) and dredgers work only new ground the area affected directly by the extraction of sediments is $175 \times 10^6 \text{ m}^2$. Using Steele (1965), an average estimate for benthic production in North Sea sediments is $3 \text{gCm}^{-2} \text{yr}^{-1}$ (Figure 4); of this the contribution to demersal fish production (10% ecological efficiency) is $0.14 \text{gCm}^{-2} \text{yr}^{-1}$.
- 2. Assuming the macrobenthic production remains void in these areas throughout the following 12 months, the loss of sediment over an area of $175 \times 10^6 \, \text{m}^2$ represents a loss of macrobenthic production of $525 \times 10^6 \, \text{gCyr}^{-1}$ (525tCyr $^{-1}$) and of demersal fish production of $24.5 \, \text{tCyr}^{-1}$, which is roughly 294t wet weight of demersal fish.
- 3. The actual loss of standing stock biomass from the benthos can in most cases be accurately calculated for the area concerned. Assuming a $50\,\mathrm{gm^{-2}}$ biomass in the benthos (this would not include the microbenthos), the extraction of sediment over 175 x 10^5 m² would result in a direct loss of 8750t. This figure will be highly variable from a few grams per square metre to several hundred. The figures given here are wet weights. The proportion of this represented by commercially valuable shellfish stocks will also vary from area to area (from a few percent to over 10^8). Assuming 7^8 , then a further 613t of commercial shellfish are lost directly in the extraction operation.
- 4. It has proved impossible to find data on amounts, particle size distribution and period for loss of fines from a typical dredging operation to which a dispersion/settling model could be applied. Nunny and Chillingworth (1986) report, however, that 'theoretical fallout and accumulation rates have been calculated for worse case conditions and are minimal beyond 1 km of the dredger.' Taking this value as a radius, the area of plume in which primary production may be affected is 3.1km² for each operating dredger. Given an average hopper capacity on a dredger of 5000 t (2800m³), removal of 35x106m³ in the North Sea would require 12500 vessel trips per year on a 24 hour cycle and that discharge of fines occurs continuously during daylight hours, there will be 43 vessels giving rise to such a plume during any day. The total surface area of all such plumes combined is equal to 133.3km² (43x3.1km²).
- 5. If we assume that such areas are void of primary production the corresponding loss is 13330tCyr $^{-1}$. The loss of demersal and pelagic fish production based on 1. above is thus calculated to be 22.7tCyr $^{-1}$ and 79.9tCyr $^{-1}$ respectively, or 272t wet weight of demersal fish and 960t of pelagic fish.

- 6. The further effect of fines deposition on the benthos is difficult to estimate, partly as the resulting change in productivity is not known, but principally because the total area affected is indeterminate. I conclude that a worst case would be a covering of the benthos over an area twice that of an area actually mined. The area thus affected is $350 \times 10^6 \text{m}^2$. If, albeit unrealistically, we assume entire loss of production then, using a similar calculation as that for extracted sediments, the loss of demersal fish production is 588t wet weight. The direct loss of shellfish stock, assuming these species are smothered, would be 1226t. The latter figure seems particularly unreasonable as larger and non-sedentary species would be able to survive such conditions.
- 7. The calculation of shellfish loss (commercially taken species) is based above on the direct loss of standing stock biomass, rather than on food chain production. As shellfish are more static in their distribution than finfish and vulnerable to direct extraction this seems reasonable. Obviously the production each year of macrobenthos biomass will be several times greater than the standing stock biomass but larger organisms such as those taken in commercial fisheries will overall show a much lower productivity. In the absence of data on recovery times, and given that the proportion of commercially valuable species in any particular area will be very variable, this seems reasonable. Arguably, there will be a loss of shellfish also from the water column effect, lowering primary production and hence perhaps total detritus but this will be small.
- 8. The above calculation is put forward as a first attempt at an estimation. Such estimates will be very site-specific in practice and the validity of taking the North Sea as a whole must be open to question. It does, however, suggest the following order of magnitude values:

ANNUAL LOSSES OF COMMERCIALLY VALUABLE STOCKS

	Shellfish	Pelagic fish	Demersal fish
Sediment extraction	600 t	<u>-</u>	300 t
Water Column effects	(< 50 t)	950 t	275 t
Sediment smothering	(< 1 200 t)	-	600 t
Total	< 1 850 t	950 t	1 175 t

9. Put into context: the total fish biomass of the North Sea is approximately $10 \times 10^6 t$ (demersal and pelagic), of which roughly $2.5 \times 10^6 t$ is taken in commercial catches each year.

ŀ

Annex 3

Details of National Seabed Sediment Mapping Programme

Belgium

Staff: The various institutes that take part in seabed sediment mapping in the Belgian sector include:

- Belgian Geological Survey, Brussels, Prof R. Paepe
- Fisheries Research Station, Ostend, D. Maertens,
- 3 persons
- - Prof. G. de Moor c.s./superficial sediments - 2-3 persons
- 4-5 persons HAECON Corporation, Ghent
- Management Unit for the Mathematical Model of the North Sea, Brussels, Mr Pichot, Director - several

Equipment

- the shared use of various, multipurpose research vessels
- various lines of shallow geophysical equipment (Ghent University) including boomer, sparker
- various corers and grabs (Ghent University, Fisheries Research Station).

Budget: No information available on budget for mapping. Ministry of Public Works funds HAECON for their nearshore work.

Maps: Recent mapping activities include:

- A general map on scale 1:100000, Mercator projection, showing the different surficial sediments (sand classification, sand quality, mud content, gravel content) based on van Veen grabs, data from Ministry of Public Works, published in 1989 but dated 1987. Legend in English. Available from Management Unit. Code MUMM/SED/87/01.
- 7 lithological maps, on scale 1:40000, of areas of special interest in nearshore area not more than 15km from the shore. Areas include the western (Kwinte Bank) sand extraction area. Legend in English. Published in 1989 with date 1987. Maps are available from the Management Unit. Codes MUMM/SED/87/02 to 08.

An explanatory note for these maps has been published (1989 with date 1988). Text in either of two languages (French/Dutch).

A seabed sediments map on scale 1:250000, UTM projection, is being compiled by HAECON for the Belgian Geological Survey, complementing those of the British and Dutch sections being prepared by the respective Geological Surveys. This map follows the set-up of the British and Dutch 1:250000 map series. Draft map ready in 1989, to be published in 1990/91. Available from the Belgian Geological Survey, Jennerstraat 13, Brussels.

List of maps

- MUMM/SED/87/01: NORTH SEA FLEMISH BANKS Superficial sediments. Scale: 1:100000
- MUMM/SED/87/02: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK

Bathymetry. Scale: 1:40000 MUMM/SED/87/03: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK

Percentage gravel. Scale: 1:40000

- · MUMM/SED/87/04: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK Percentage mud. Scale: 1:40000
- MUMM/SED/87/05: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK

Sorting of the fraction < 4mm. Scale: 1:40000

MUMM/SED/87/06: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK

Median grain size. Scale: 1:40000

- MUMM/SED/87/07: NORTH SEA OOST DIJCK, BUITEN RATEL AND KWINTE BANK
- Morphostructure. Scale: 1:40000 MUMM/SED/87/08 NORTH SEA RATELKOP Bathymetry. Scale: 1:20000

Future mapping projects:

Other surficial sediment maps are planned based on detailed scientific research by universities and the Ministry of Agriculture and Fisheries. .

Remarks: A map showing the location of all the various mapping projects in the Belgian sector of the North Sea does not appear to be available.

Canada

Staff: GSC has close to 130 persons involved in marine mapping. This is inclusive of mapping by the hydrocarbon group. Excluding these some 40-50 persons are involved.

Equipment: GSC owns several larger survey vessles (eg HUDSON, DAWSON) and a few smaller ones. Shiptime for the mapping programmes amounts to 3 months per year. GSC possesses the standard suite of marine geological and geophysical equipment including high resolution seismic systems, side-scan sonar, magnetics, vibracorers, piston corers, grabs.

Budget: Total expenditure per ship-month is about \$70000. Total field expenditures for all field programmes both onshore and offshore are about \$2500000/year.

Published maps: Beyond 50m water depth all of the east coast has been mapped to some extent, at a scale of 1:1000000 or 1:2000000, in Lambert and Mercator projections. Maps are available from the Scotian shelf and Grand Banks. Data on the contents of the maps, on the classification used and on the density of sample points/lines may be found in the references listed below. An outline map showing the locations of the published maps is to be produced. Published surficial geology maps include Drapeau and King (1972), Fader et al (1977), Fader et al (1982), Fader and Pecore (1989), King (1970), MacLean et al (1977) and MacLean and King (1971). Other examples include Hale (1987), Miller and Fowler (1987) and Anon (1989).

Localised aggregate extraction operations take place landward of the 50m isobath. Such resources have not been systematically mapped in the past. The first map detailing these, for the region immediately off Cape Breton Island (ENE Nova Scotia), was published in 1989. More similar maps of coastal waters showing the distribution and thickness of shallow bedrock, surficial sediments and seabed features are being prepared from the Bay of Fundy, the Scotian shelf, the southern Gulf of St. Lawrence and off southern Newfoundland. Maps will be published in 1989 and 1990. Nearshore mapping is to be carried out in Halifax harbour and Cape Split in the Bay of Fundy.

Order: Maps may be ordered at cost from the Atlantic Geoscience Centre and Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada B2Y 4A2 or from the Department of Energy, Mines and Resources, 580 Booth Street, Ottawa, Ontario, Canada KIA 0E4.

Denmark

Staff: Staff involved in the mappoing of the Danish continental shelf comprise 1 geophysicist, 4 geologists, 2 biologists, 1 geographer, 2 engineers and a technical and administrative staff of 7 persons.

Equipment: Research vessels are shared with the Environmental Protection Agency. The equipment includes:

- Syledis positioning system
- echo-sounder
- · pinger
- boomer
- sparker
- 100 kHz side-scan sonar
- · various corers and grabs
- air-lift suction system
- video seafloor cameras

Budget: £400000. Staff are not included in this figure.

Map content: Resource maps are prepared at a scale of 1:100000 in UTM projection and cover approximately 1000km² each. The surveyed areas are documented in internal reports describing the geology of the area and the distribution and lithology of the sand and gravel resources. The reports include maps at a scale of 1:100000 showing bathymetry, geophysical lines and sample stations, distribution of surface sediments and sand and gravel resources. Today 70% of the sea bed in the Danish domestic waters has been mapped. Detailed investigations including supplementary shallow seismic profiling and coring are made in areas of special interest.

Published maps: Evaluation is made of the biological, fishery, geological and cultural history assets in each area. Existing information is gathered from scientific reports as well as from private organizations and the fishing and dredging industry.

All available information is published in 'Blue Sea Reports' describing geology, sand and gravel resources, biology and archaeology. Each report includes maps showing:

- bathymetry (1:100000) geophysical lines and sample stations (1:100000)
- distribution of sand and gravel resources
- seabed sediments (1:200000)
- potentially conflicting interests (1:200000)

See list of publications.

Special maps:

- Positive and negative raw material indications (1:750000)
 - Structural map of top chalk group (1:500000)

Future maps:

Seabed sediments (1:500000)

Order: Skov- og Naturstyrelsen, Havundsungersoegelsen, Slotsmarken13, DK-2970, Hoersholm.

List of publications:

Datareports:

Havbundsundersoegelser. Raastoffer og fredningsinteresser.

Marine studies, raw materials and conservation interests map sheets:

Djursland Nord. Oversigt 1986.

Bornholm 1986.

Fakse Bugt 1986.

Lillebaelt 1986.

Nordsjaelland 1987.

Smaelands farewaters 1987.

Grena 1987.

Samso-Nordost 1987.

Sjaellands Rev 1987.

Roskilde Fjord 1988.

Havbundsundersoe gelser, Biologi: Dyre- og plantesamfund ved Samsoe stre Flak - pilotundersoegelse. Ole G. Norden Andersen. Skov- og Naturstyrelsen 1987.

Geological and land use planning maps:

Positive og negative raastofindikationer i de indre danske farvande.

Editors: John Tychsen, Poul Erik Nielsen og Birgitte Larsen. Fredningsstyrelsen 1986.

ISBN: 87-503-6358-1

Bornholm. Geological map of Mesozoic formations. Editor: Niels Erik Hamann.

The National Forest and Nature Agency 1987.

ISBN: 87-503-6889-3

Kalkoverfladens struktur. Danmark 1:500000.

Editors: Niels Ter-Borch og John Tychsen.

Published by: Skov- og Naturstyrelsen, Havbundsundersoegelsen og Dansk Olie- og Gasproduktion A/S.

Skov- og Naturstyrelsen 1987. ISBN: 87-503-7053-7

Store Baelt. Kort over raastofforekomster.

Editor: Poul Erik Nielsen.

Skov- og Naturstyrelsen 1987.

ISBN: 87-503-6959-8

ISSN: 0903-3734

Annual report:

Fredningsstyrelsens Havbundsundersoegelse. Aktiviteter 1985. Editor: John Tychsen

Fredningsstyrelsen 1986.

Havbundsundersoegelser. Activiteter 1986.

Editor: John Tychsen. Skov- og Naturstyrelsen 1987.

Havbundsundersoegelser. Activiteter 1987. Editors: John Tychsen og Hans Christensen.

Skov- og Naturstyrelsen 1988.

Brochures:

Havbundsundersoegelser.

Skov- og Naturstyrelsen 1987.

Marinbiologisk kortlaegning. (Marine biological mapping)
Marinarkaeologisk kortlaegning. (Marine archeological
mapping)

Seismiske undersoegelser. (Seismic research)

Marin-seismisk metode og udstyr. (Marine seismic methods and

equipment)
Havet skjuler store rigdomme. (The sea hides great resources)
Editors: John Tychsen og Hans Christensen.
Skov- og Naturstyrelsen 1988.

Great riches are hidden in the sea. Editor: John Tychsen.

The National Forest and Nature Agency 1988.

Publications:

Hvad skuler Kattegat? (What is hidden in the Kattegat?)
Poul Erik Nielsen og Esben Moeller., I; Varv. 1985, nr. 1, side
3-7.

Kortlaegning af havbundens ra'stoffer (sand, grus m.m.). (Mapping of the inorganic submarine resources)
Torsten Christensen, Poul Erik Nielsen og Anne Grete Swainson.
I. Tidsskrift for Dansk Kartografisk Selskab. 1982, nr. 2, side 5-14.

Kortlaegning af raastoffer paa havbunden. (Mapping of submarine resources)

Poul Erik Nielson og Torsten Christensen. I: Varv. 1984, nr. 1, side 14-20.

Marin raastofkortlaggning og raastofkvalitetsvurdering. (Submarine inorganic resources mapping and quality assessment) John Tychsen. Saertryk af Dansk Beton nr. 1/87.

Undersoeiske rygge vest for Bornholm. (Investigation of the ridge west of Bornholm) Niels Erik Hamann. I: Vary. 1988, nr. 1, side 26-31.

Special publications: Havbundsundersoegelsen. Reports and maps 1979-1987. Editor: Pernille Bruun Junge Skov- og Naturstyrelsen 1987.

Haybundsundersoegelsen. Kattegat "Koraller" paa havbunden - en statusrapport. (Kattegat "corals" on the sea bottom - a status report) Jens Muff Hansen Skov- og Naturstyrelsen 1988.

Federal Republic of Germany

Staff: The German Hydrographic Institute has made several persons available for seabed sediment studies in the North Sea. Staff from the Geological Surveys are made available on an ad hoc basis.

Equipment: Standard equipment is employed by DHI and the Federal and State Surveys.

Budget: No data available.

Maps: List of the seabed sediment maps:

Jarke, J., 1956. Der Boden der südlichen Nordsee. 1. Beitrag: Eine neue Bodenkarte der südlichen Nordsee. Deutsches Hydrogr. Zeitschr., 9, 1-9, 1 Karte, Hamburg.

Southern North Sea from 51°20'N to 55°20'N Area: Scale: 1:1000000

Size: 70 x 43 cm

Content: Representation of the grain size distribution of the surficial sediments.

Figge, K., 1981. Karte de Sedimentverteilung in der Deutschen Bucht, Nordsee. Deutsches Hydrographisches Institut, Karte Nr. 2900 (mit Beiheft), Hamburg.

Area: German Bight, western boundary 6°E, northern boundary 55'05'N.

Scale: 1:250 000 80 x 90 cm Size: Projection: Mercator.

Content: Grain size distribution of the uppermost 10 cm according to the depth penetration of the grab sampler. Modern legend.

Figge, K. (in press). Thickness of the Holocene sediments in the German sector of the North Sea (provisional title). In preparation (publication planned for 1989).

preparation (publication planned for 1989). Area: German sector of the North Sea

Scale: Not fixed yet.

Projection: Mercator.

Content: Thickness of the sediments overlying the first strong reflector which appears in boomer records and which is regarded to be the basis of the North Sea sediments (Holocene).

Other publications:

Bundesanstalt für Bodenforschung: Geologische Übersichtskarte 1:200000, Blatt CC 2310 Helgoland. Hanover, 1973. Area: German Bight, western boundary 7°20'E, northern boundary

54°24'N. Size: 70 x 80 cm.

Content: The grain size distribution of the seabed sediments is represented based upon maps of the Deutsches Hydrographisches Institut.

Furthermore there are some other maps published in the literature. These cover small areas in different scales.

Maps in relation to mineral resources: Ludwig, G. and Figge, K., 1979. Schwermineralvorkommen und Sandverteilung in der Deutschen Bucht. Geol. Jb. D 32, 23-68, 10 Ktn., Hanover.

Order:

- Seabed sediment maps may be obtained from the German Hydrographic Institute, Bernard Nocht Strasse 78, Postfach 220, D2000 Hamburg, Federal Republic of Germany.
- Geological maps may be obtained from the Federal Geological Survey in Hanover and from the State Geological Surveys of Lower Saxony, Hanover, and Schleswig-Holstein.

Finland

A permanent marine geological staff of 7 persons is employed for the purpose of seabed sediment and resource mapping. Additional personnel are employed for the field season including a master for the research vessels.

Equipment: The GSF has two research vessels (13m and 40m long respectively) equipped as follows:

- Motorola Miniranger III positioning system including MRDP survey processor
- Reflection and refraction seismics (air guns and ELMA-electromagnetic sound source)
- Echo-sounder (pinger)
- 100 kHz side-scan sonar
- Vibro-hammer-corer (6/12m)
- · Piston corers
- Various other corers and grabs
- Underwater television, sea-floor camera systems
- Scuba-diving equipments

Map content: The fieldwork (with a coverage of virtually 100% of the sea floor) is conducted on maps at a scale 1:20000. Each map sheet covers an area of 100km and shows the Quaternary deposits according to character and genesis. Both superficial sediment distribution and sections are presented.

Published maps: Currently Finland has data from over 80 maps from several areas along the Gulf of Finland. These maps will not be published, but the data is available for the qualified user as computer plotted maps. Generalised maps are being compiled at a scale of 1:100000 and will be printed during the coming years. The first map of this series (Map sheet - Kotka) is in print. Data of exploitable sand and gravel deposits has been provided to regional planning associations. In the future mapping is to be carried out in the south-western archipelago.

Order: Additional information can be obtained from the Geological Survey of Finland, Marine Geology, Kivimiehentie 1, SF-02150 Espoo, Finland.

France

Staff: The equivalent of 10 scientists are available for the geological projects on the continental shelf. They are made available by BRGM, IFREMER and the universities.

Equipment: The French marine geological community essentially works in deep water areas. For coastal management and shelf problems there are 4 coastal ships, for the Channel, for Brittany, for the Bay of Biscay and for the Mediterranean respectively. The main types of equipment are:

- · high resolution seismics
- mobile positioning system (Syledis)
- side-scan sonar
- camera system
- · heavy corer (7 tonnes), 12 metres
- vibrocorers (BRGM and IGBA)
- · various other corers and grabs

Budget: In the last 10 years IFREMER-CNEXO (Centre National pour l'Exploitation des oceans) has spent more than 2 million FF per year for sand and gravel exploration. At present the budget is 0.5 million FF per year for sand and gravel projects. Staff, shiptime and overhead costs are not included in the budget mentioned above.

Maps: Published maps include:

- A geological map on scale 1:1 500 000 showing the continental shelf of France (BRGM), published in 1980
- · A geological map of the North Sea/Channel, 1:250000.
- A sediment map on scale 1:500 000, two sheets 'La Manche' and 'Le Golfe de Gascogne' and Mediterranean (BRGM + IFREMER)
- Superficial sediment maps including seabed morphology, off Boulogne and off Dunkirk, scale 1:43400, Mercator projection, published in 1987 (IFREMER).
- Detailed coastal maps on scale 1:15000 like the Bay of Douarnenez (Brittany)
- Fishing charts on scale 1:60000 for the 'Golfe de Lion' area from Marseille to the Spanish border

- Many other maps based on seismic and side-scan sonar data, appeared in reports and publications
- Numerous reports on offshore resources, in part with maps. See 'Les Granulats Marins' (1987), published by CNEXO (IFREMER) in which more than 60, mainly French, reports have been listed

Future programmes include:

The setting-up of a data base on the French EEZ (11 x 10 km). A team of 15 scientists, 4 months ship-time/year, and an extra budget of FF10million are envisaged. The project leader should be IFREMER in cooperation with other research institutions, oil companies and universities. Bathymetric maps will be published at three scales. Those from shallow water areas will be at 1:250000 while those from deeper water areas will be at 1:500000 or 1:1000000. Other maps will include surface sediments, solid geology, mineral resource (aggregates, nodules, crusts, sulfides), geological hazards etc.

Order: IFREMER publications are to be ordered from:

- · IFREMER/Centre de Brest, BP 70, 29263 Plouz Avé, France
- IFREMER, 66 Avenue d'Iéna, Paris 75116, France
- BRGM publications may be ordered from:
 BRGM, Orleans, France.

Ireland

Staff: The Marine Section of the Geological Survey of Ireland has a staff of 2 persons. However, for projects such as those listed in Sn 4.2.1 scientists from the universities are also occasionally involved.

Equipment: 6-9 weeks ship-time per year on the state-funded RV LOUGH BELTRA. The section is equipped as follows:

- positioning system: Decca
 shallow seismics (sparker, boomer)
- pinger
- side-scan sonar
- dredge samplers

Map content: Most of the results are shown on different thematic maps. On surface sediment distribution maps areas are classified according to grain size distribution in mud, sand and gravel. Outcrops of rock are also shown. As a consequence of exploratory work on beach deposits the presence of heavy minerals, lithium, gold, etc. is indicated in some investigations. The map scales vary but are the same as the Admiralty charts. The projection is Mercator, UTM. The BGS maps are at a scale of 1:250000.

Published maps: No final maps are yet published although some have been included as figures in various reports.

Order: Maps are available for consultation at the Geological Survey of Ireland, Beggars Bush, Haddington Road, Dublin 4, Ireland.

Future programme:

· Continued mapping of the continental shelf

Mapping the continental shelf margin

- A Marine Institute will probably be set up in Ireland. The Marine Section of the GSI may move to this new institute
- Outline map showing recent activities on the Irish continental shelf will be provided by GSI

The Netherlands

Staff: At the Geological Survey of the Netherlands (RGD) there are 15-20 persons available on a part-time basis for the various offshore mapping programmes, of which roughly one-third are scientists and two-thirds technicians and assistants. The North Sea Directorate, mentioned above, provides the ship's crew and the positioning staff.

Equipment: The North Sea Directorate has several multi-purpose vessels that are made available for the mapping programme. The principal types of RGD equipment are:

· various van Veen grabs and Hamon (gravel) grabs

· electric, air-driven and hydraulic vibrocorers

 a combined airlift-counterflush drilling/vibrocoring system (GEODOFF II) and an air-lift counterflush system using flexible hoses (ROFLUSH)

various piston corers and boxcorers

 high resolution seismics including waterguns, sleeve guns, sparkers, boomers and pingers with single- and multichannel streamers and data processing facilities

an underwater camera system

- side-scan sonar systems (North Sea Directorate)
- various positioning systems (North Sea Directorate and RGD)

Budget: About 400000 Dutch guilders are spent by RGD each year largely for the various mapping projects. Staff, shiptime and overhead costs are not included in this figure.

Seabed sediment maps: Reconnaissance mapping of seabed and Holocene (and older) sediments on both sides of the median line is presently being carried out by the British Geological Survey (BGS) and the Geological Survey of the Netherlands (RGD). BGS and RGD are jointly publishing a series of 1:250000 maps of North Sea areas straddling the median line. The map series consists of pre-Quaternary (solid), Quaternary (Pleistocene) and seabed sediments (Holocene) maps. RGD is now contining this series towards the German sector in cooperation with the Geological Survey of Lower Saxony and the German Hydrographic Institute.

The Quaternary map shows a number of seismo- and lithostratigraphic units (formations) ranging from deltaic and marine transgressive sediments, tidal flat deposits and lacustrine clays to various non-marine, including glacial, deposits [see Laban et al. (1984)]. Relevant properties of the formations are shown.

In addition the sediments of the Holocene marine transgression have been subdivided into separate formations, each with a characteristic lithology. Various properties of the (near) surface sediments are shown on the seabed sediments maps, as these are the main target for sand and gravel exploration and exploitation offshore.

At present seabed sediments (Holocene) maps are available at BGS and RGD from the Flemish Bight area (52°N-53°N, 2°E-4°E) and the Indefatigable area (53°N-54°N, 2°E-4°E) [see Cameron et al. (1984) and Harrison et al. (1987)] and the Silver Well area (54°-55°N, 2°E-4°E) (1989), with the Dogger area (55°N-56°N, 2°E-4°E) and the Ostende area (51°N-52°N, 2°E-4°E) being in press. The latter map was prepared in cooperation with the Geological Survey of Belgium (BGD), while the former was made with contributions from German and Danish surveys.

The systematic geological reconnaissance mapping on scale 1:250000 of the Netherlands North Sea will be continued in such a way that maps of about half of the area will be available in 1991, with the remaining maps becoming available before the year 2000.

Resource maps:

The Netherlands and the Netherlands North Sea - reconnaissance map of raw materials at or near the surface.

This 1:1000000 map (Niessen and Schüttenhelm, 1986), in a local stereographic projection, is, as regards the offshore part, an updated version of a superficial geology map (same scale, Mercator projection) of the Dutch sector (Schüttenhelm, 1980). The map depicts the composition of the uppermost 50cm using the international phi (Wentworth) units. The map is available at the Geological Survey of the Netherlands.

The data show that surface sediments of the Dutch sector of the North Sea only contain relatively small to very small quantities of coarse sand and gravel. Medium sand is being extracted in the southern part where it occurs over large areas. Fine sand is present in the central, the northernmost and the north-eastern parts of the shelf. Very fine sand and mud occur mainly in the Oyster Ground area, the north-central part of the Netherlands North Sea. In Schüttenhelm (1980) some particulars are given on the composition, distribution and origin of these surface sediments.

Mapping of exploitable sands for industrial use in the nearshore areas of the Netherlands North Sea:

At the request of the North Sea Directorate of Rijkswaterstaat (Public Works) a report with 1:100000 maps (Niessen, 1986) was made to show the occurrence of various types of (near) surface sands within a radius of 50km from five Dutch sea ports.

On the maps occurrences of sands suitable for concrete and mortar fabrication, infill-sand and sand for coastal suppletion purposes have been distinguished.

Definitions used in this report are:

concrete/mortar sand - 250 μ < d50 < 1000 μ , mud content < 2%,

infill sand lime content < 25%; - 63 $\mu < d50 < 250 \mu$,

mud content< 50% but with max. 8% < 2 μ

sand for beach nourishment - d50 > 250 μ , mud content < 10%

Revised definitions of sand classification are presented below.

Sand properties were studied down to 5m below the surface. The five sea ports, the main ports in the Netherlands, are Rotterdam/Hook of Holland, Flushing, IJmuiden, Den Helder and Eemshaven. Concrete and mortar sand is found locally off the first two harbours mentioned above, infill sand around all harbours. Suppletion sand only occurs south-west of the Hook of Holland. A comparable, but more detailed study, also within a 50km radius of the same five main ports but in areas deeper than the 10m isobath, is planned for the near future.

The present draft of the 'Regional aggregate exploitation plan for the Netherlands sector of the North Sea' (draft of January 1990), however, contains a modified set of sand classifications which are now in use. These are: concrete sand - d50 > 400 U.

- d50 > 400 μ,
 mud content < 2%,
 lime content < 25%</pre>

mortar sand $-300~\mu < d50 < 1000~\mu$, mud content <2% infill sand $-63~\mu < d50 < 250~\mu$,

mud content < 8%

sand for beach nourishment - $d50 > 200 \mu$

Exploration for gravel occurrences

In 1980 a gravel deposit was discovered in an area a little over 150km north-west of Den Helder. Successive studies showed that the deposit extends over parts of the blocks K1 and E16, south-east of the Dogger Bank. The water depth here is 30-40m or greater. Gravel content varies from less than 30% to 80%. The gravel layer is 0.2-2m thick. Sand ribbons locally cover the gravel. The gravel is related to the limit of a Weichselian land ice sheet that covered large parts of the western side of the North Sea. The volume of gravel at water depths of less than 40m is estimated at 40-50 million tonnes, which is about 3 times the annual gravel consumption in the Netherlands (Wiersma and Schüttenhelm, 1984).

At present the gravel is offered to industry for exploitation. In 1989 some pilot dredging was performed. The gravel deposit is the first such deposit discovered in the Netherlands sector since systematic marine geological reconnaissance and mapping started in 1968. Recent surveys in small areas north-west of the islands of Texel and Vlieland suggest the occurrence of local gravelly sand accumulations within a large sand area. Gravel volume estimations are not yet available.

Other maps: In 1989 the Ministry of Transport and Public Works published a series of four morphological maps of the Dutch nearshore areas on a scale 1:250000. See van Alphen (1989).

Future maps: In 1985 a more detailed geological mapping programme on scale 1:100000 in the nearshore areas was started. First maps will be available within a few years. This mapping programme will include detailed studies of the surface and near-surface sediments, their properties and their use.

Order: Seabed sediment and marine geological maps may be ordered from:

- Geological Survey of the Netherlands, PO Box 157, 2000 AD Haarlem, The Netherlands Resource maps and morphological maps may be ordered from:
- The North Sea Directorate of Rijkswaterstaat, Koopmanstraat 1, Rijswijk, The Netherlands, or from the Geological Survey (see above).

Norway

Information about staff and budgets is lacking.

Equipment: standard equipment is employed.

Published maps: A series of ten maps have been produced of the Norwegian continental shelf (see Figure 5). Two maps of the mid-Norwegian continental shelf published by the Norwegian Continental Shelf Research Institute (IKU) deal with the sediments: (a) thickness of Quaternary deposits (IKU Publication No 119); (b) distribution of Quaternary sediments (IKU Publication No 120).

Order: Maps and reports from the polar region can be ordered from the Norwegian Polar Institute, Fornebu, Oslo. All other maps from the Geological Survey of Norway, PO Box 3006, N-7001 Trondheim, Norway.

Sweden

Staff and Budget: Until recently the Division of Marine Geology has had a permanent staff of 6 persons and a yearly budget of about Skr2300000. As a consequence of a government decision in 1988 which involves an increase in the rate of mapping from one map per three years to one map per year, the staff will be increased to 13 persons and the annual budget to Skr8000000 in 1991 (capital costs of the research vessel excluded). The programme has been extended with a special sub-programme concentrating on the analysis of anthropogenic substances.

Equipment: The SGU has one research vessel and a 38m long Catamaran. The division is equipped as follows:

- Dynamic positioning system and HPR
- Syledis positioning system including HDH survey processor
- Shallow seismic (boomer and sparker)
- · 50, 100, 500 kHz side-scan sonars
- Pinger
- Echo-sounders
- Vibro-hammer corer (6m)

- Piston corers
- Various cores and grabs
- Underwater television, sea-floor camera
- Scuba-diving equipment

Map content: Maps are published by the Swedish Geological Survey (SGU) at a scale of 1:100000 and show the distribution of the superficial Quaternary deposits according to character and genesis. Each map sheet covers an area of 2500km and is accompanied by a description. Subsidiary maps are produced mainly at a scale of 1:200000 and show, within the map area, the distribution of pre-Quaternary rocks, till and glaciofluvial deposits, sand volumes, certain trace elements of environmental interest, coring sites, sites of grab samples and tracklines. The maps are projected in Gauss with both the Swedish grid net 2, 5c,W 1938 and the longitude and latitude system. Geological sections of the mapped area are also presented in a subsidiary map at a scale of 1:100000.

Published maps: Currently Sweden has mapped 9% of the Swedish continental shelf (see outline map, Figure 6). The results are published in 5 maps from the Sounds at a scale of 1:50000 (SGU Rapporter och Meddelande, no.13); 3 maps from the northern Gotland area in the Baltic (SGU Serie Am no.1-3) at a scale of 1:100000 and one map from the southern Kattegat (SGU Serie Am, no.4). The central Kattegat has recently been mapped and results should be published in 1991 (SGU Serie Am, no. 5). Mapping of the northern Kattegat starts in 1990.

An outline map of the solid geology of the Swedish Continental Shelf area at a scale of 1:1000000 (SGU Rapporter och Meddelande no. 47) was published in 1986.

Order: Maps, with description and English summary, can be ordered from the Geological Survey, S-75128 Uppsala, Sweden.

United Kingdom

Staff: BGS Marine Group consists of around 100 people largely involved in geological mapping and related matters. The marine aggregates programme involves up to 10 people for short periods of time.

Equipment: For the mapping programme BGS makes use of NERC and chartered vessels and a suite of BGS equipment including:

- high resolution seismics including airguns, sparkers, pingers, boomers with receiving and data processing facilities
- sidescan sonar systems
- grabs, gravity and vibrocorers
- a shipboard drilling system for 2-300m holes.

Budget: No data are available on the current offshore geological mapping programme. Costs for resource surveying Areas 1,2 and 3 of the marine aggregate programme (see below) are approximately £180000, £240000 and £280000 respectively.

Seabed sediment maps: The British Geological Survey began mapping the UK sector of the continental shelf in 1969. The maps are published at a scale of 1:250000 in UTM projection and each sheet covers one degree of latitude and two degrees of longitude (Figure 7). There are 342 maps planned in the series including separate maps showing gravity anomolies, aeromagnetic anomolies, solid (pre-Quaternary) geology, Quaternary geology and seabed sediments. In some areas the seabed sediment and Quaternary geology maps are combined to form a single sheet.

Currently (early 1990) around 85% of the maps are published, including 46 seabed sediment maps, and the complete suite of maps is scheduled for publication by 1992. The maps are based on seismic tracks run with a line spacing of 5-10km and bottom sample and core stations with a similar spacing. During the survey of the continental shelf over 225000km of seismic traverses have been run, bottom samples and shallow cores obtained from more than 30000 sites and over 500 boreholes drilled. Bathymetric, sidescan sonar, bottom current and tidal data from other sources, including commercial site investigations and naval hydrographic data, are integrated in the seabed sediment maps. Each map shows the bathymetry and the distribution of seabed sediments, defined under a modified Folk (1954) classification. Further information is provided around the margin of the map including a description of the sediments, topographic sections, oceanographic data and small maps at a scale of 1:1000000 giving details of sediment parameters and calcium carbonate contents.

In addition to the 1:250000 series the seabed sediment maps are summarized on two sheets, covering, respectively, the northern and southern UK shelf areas, at a scale of 1:1000000 and are described in a summary report (Pantin, 1988).

The samples and data collected by BGS and used in the map preparation are held on open file in the BGS archive and are available for further study.

The maps are available through government bookshops and at the sales outlets listed below.

Resource maps: In 1986 the Crown Estate and the Department of the Environment jointly commissioned BGS to undertake a programme of marine aggregate resources appraisal based on a two-tier approach. The first stage of this programme, directed and financed by the Crown Estate, is a series of desk studies covering all offshore areas of the UK continental shelf. The first of these studies covering the southern North Sea area (Phase 1) drew together all information concerning geology, distribution of seabed sediments, bathymetry and the local hydraulic regime in order to identify potential resource areas which merited additional surveys to quantify in broad terms the available resource. These resource assessment surveys form the second stage of the approach. The surveys involve geophysical traversing using sidescan sonar and high resolution profiling subsequently calibrated by sampling and coring. Marine aggregate resources are classified on their relative proportions of gravel, sand and fines in the sediment. Gravel is defined as sediment greater than 5mm, sand as sediment between 5mm

and 0.063mm and fines (silt and clay) as material less than 0.063mm grain size.

The appraisal of resources and the geological interpretation will assist the mineral planning role of the Department of the Environment and the management of resources and licensing of dredging areas by the Crown Estate. The results also provide a geological basis for the detailed evaluations undertaken by the marine dredging industry and will provide those involved with fisheries interests useful information on bottom conditions, including sediment type, thickness and stability, and on the nature of the substrate.

The current status (with publication dates) of the marine aggregates programme is outlined below:

Desk Studies

Resource Surveys

Phase 1 Southern North Sea 1986	Area 1	Great Yarmouth to Southwold, East Anglia, 1988
Phase 2 South Coast 1988	Area 2	Isle of Wight to Beach Head, 1989
Phase 3 East Coast 1990	Area 3	Humber (commencing summer 1990). Publication
Phase 4 Irish Sea 1991?	Area 4	scheduled for 1992 Bristol Channel? Commencing 1992 ?
Phase 5 South-West Coast 1992?		•

Phase 5 South-West Coast 1992? (parts of the Bristol Channel area were reviewed in a separated desk study in 1988).

The resource survey reports described the distribution of resources and the geological controls which determine their quality and quantity. The reports are accompanied by colour-printed maps at the 1:100000 scale or 1:250000 scale showing:

- Bathymetry
- 2. Geophysical lines and sample stations
- 3. Seabed sediments and bedforms
- 4. Thickness of superficial sediments
- 5. Seismostratigraphy
- 6. Thickness of palaeovalley sediments
- 7. Geological map
- 8. Potential aggregate resources

Orders:

BGS offshore geological maps are available from:

Sales Desk

British Geological Survey

Agent)

Keyworth

Nottingham NG12 5GG

(Ordnance Survey 22-24 Canon Street London SW1H 00U

The London Map Centre

Plumtree (060 77) 6111

01-222-2466

Sales Desk British Geological Survey Agent) Murchison House Edinburgh EH9 3LA

031-667-1000

Thomas Nelson and Son (Ordnance Survey

51 York Place Edinburgh EH1 3JD

031-557-3011

BGS Information Office (Orders) at the Geological Museum Sales) Exhibition Road London SW7 2DE

01-589-4090

Geological Museum Bookshop (Counter

Exhibition Road London SW7 2DE

01-589-3444

BGS marine aggregate desk study reports and maps are available (normally free of charge) from the Crown Estate at:

Marine Estates The Crown Estate Crown Estates Office 13-16 Carlton House Terrace London. SWIY 5AH

BGS marine aggregate survey reports and maps are available from:

The Department of the Environment Minerals and Land Reclamation Division 2 Marsham Street London. SWIE 6RB

The first of these reports (Great Yarmouth - Southwold) was priced at £1000. One year after publication the price was reduced to £126. The pricing policy is being reviewed for the subsequent reports. Both desk study and survey reports/maps are openly available in BGS libraries two months after publication of desk study reports and one year after publication of survey reports.

United States

Staff: complete information is not available.

Budget: complete information is not available

Equipment: the mapping effort is generally limited to the reanalysis and integration of existing data and samples. There has been no standard equipment for these historical surveys. Published maps: there is as yet no central compilation of maps relating to offshore sand and gravel resources. The most recent relevant maps are cited in Annex M.

Future mapping programmes: the CONMAP Programme intends to remap the entire Atlantic Coast and the coast of the Gulf of Mexico at a scale of 1:1000000. The first map of the New England Shelf is in press.

As part of the MMS Programme, joint Federal State Task Forces have been set up on the Atlantic and Gulf coasts in North Carolina (for phosphorite), in Georgia (for phosphorite and heavy mineral placers) and along the Gulf Coast (for sand), but a series of maps is not yet available.

Order: CONMAP Programme, US Geological Survey, National Centre, Mail Stop 195, Reston, Virginia 22092, USA.

Minerals Management Service, Atrium Parkway Building, 381 Eldon Street, Herdon, Virginia 22070, USA.

Annex 4. Recent Research at a Marine Gravel Extraction Site off Dieppe, Eastern English Channel

The following report was submitted to the Working Group by M. Desprez after completion of the Cooperative Research Report but has been included here because of its relevance to the study of the physical and biological impacts of marine aggregate extraction operations.

TEN YEARS OF BIOSEDIMENTARY MONITORING AT A MARINE GRAVEL EXTRACTION SITE OFF DIEPPE (EASTERN ENGLISH CHANNEL)

Extraction of marine sediments off Dieppe commenced in 1980. The extraction site is located at a depth of 15m upon a substrate composed of shingle banks thinly covered with ripples of shell sand. The intensity of the extraction operation has varied from year to year but an average of 400,000t per annum has been removed in the 10 years since 1980, by suction trailer dredger, over the $3\ \rm km^2$ of the site.

Biosedimentary monitoring was undertaken to evaluate the impact of this operation on the benthic environment, and to establish the limits and the degree of physical and biological changes of the bottom in and around the extraction site.

Inside the site:

- bottom topography was changed by the creation of extraction channels which were only partly refilled despite the presence of strong currents and mobile sand ripplies in this area;
- extraction has progressively eliminated the original sandy gravel and replaced it with fine sand derived primarily from overflow from the dredger during operation;
- the benthic community has changed from one of coarse sand with Amphioxus to one of fine sand with Ophelia.

The most striking change is in the impoverishment of the fauna: within the site there were 2 to 4 times fewer species than in undisturbed sites and the densities were also 2 to 10 times lower (Figure 8). The fauna is however not toally eliminated and errant species (eg Amphipods and certain Echinoderms) were much quicker to recolonise than sedentary biota (eg some Annelid and Bivalve species). The structure of the community was thus fundamentally changed with decreases in Crustaceans, Echinoderms and Bivalves leading to the almost complete dominance by errant Annelids such as Ophelia.

Around the site:

- no changes in sediment or biota were dicerned due to the restriction of extraction activity to the end of the ebb tide when waters were slack;
- monitoring of the control stations showed high natural variability of the benthic populations due to substrate instability in the strong currents;

- the range of conditions sampled in the study indicated increasing biological richness with increasing substrata heterogeneity.

Annex 5. Contributors to the Report

The following people contributed to the writing and preparation of this report:

D Alexander, Department of Fisheries and Oceans, Canada. D Ardus, British Geological Survey, Scotland. P J Bide, Department of the Environment, England. H Bokuniewicz, Marine Sciences Research Centre, State University of New York, USA. I Cato, Geological Survey of Sweden. A P Cressard, French Institute for Marine Research (IFREMER), France. S J de Groot, Netherlands Institute for Fishery Investigations, The Netherlands. M Desprez, Groupe d'etude des milieux estuariens et littoraux, France. S Footner, Crown Estates Commissioners, England. M Geoghegan, Geological Survey of Ireland. P B Hale, Department of Energy, Mines and Resources, Canada. D J Harrison, British Geological Survey, England. H-G Jansson, Geological Survey of Sweden. H C Joseph, Department of Energy, Mines and Resources, Canada. R G Lees, Ministry of Agriculture, Fisheries and Food, England. H Lehtonen, Finnish Game and Research Institute, Finland. D Maertens, Fisheries Research Station, Oostende, Belgium. A J Murray, Crown Estates Commissioners, England. P E Nielsen, National Forest and Nature Agency, Denmark. F Parrish, Crown Estates Commissioners, England. L Peer, Department of Fisheries and Oceans, Canada. H L Rees, Ministry of Agriculture, Fisheries and Food, England. S Rowlatt, Ministry of Agriculture, Fisheries and Food, England. R T E Schuttenhelme, Geological Survey of the Netherlands. J Side, Institute of Offshore Engineering, Scotland.

J van Alphen, Ministry of Transport and Public Works, North Sea Directorate, The Netherlands.

B Winterhalter, Geological Survey of Finland.

Figures

- Figure 1. Commonly practised methods of dredging for marine aggregate. A Anchor Dredging. B Trailer Dredging.
- Figure 2. Distribution of maërl banks around the coast of Brittany, France (simplified from Gautier, 1971).
- Figure 3. Distribution of maërl deposits around Ireland.
- Figure 4. The food web in the North Sea (Steele, 1965).

 (a) Simplified food weg; (b) production in each group;

 (c) ecological efficiency in each group.
- Figure 5. Map of the Norwegian Continental Shelf showing coverage of published geological maps.
- Figure 6. Map of the Swedish Continental Shelf showing coverage of published marine geological maps.
- Figure 7. Map of the United Kingdom Continental Shelf showing coverage of marine geological maps.
- Figure 8. Gravel extraction off Dieppe (Eastern English Channel): changes in abundance and species numbers from 1980 to 1988.

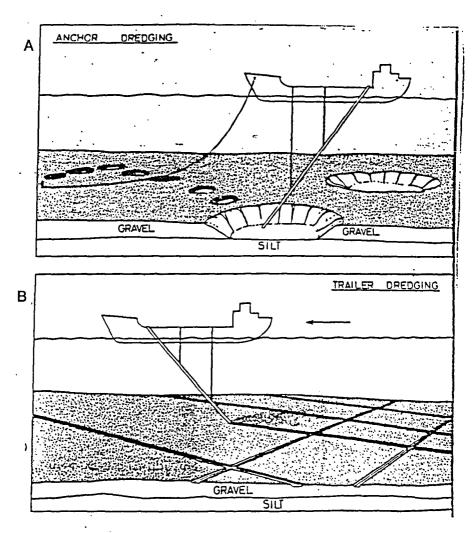


FIGURE 1

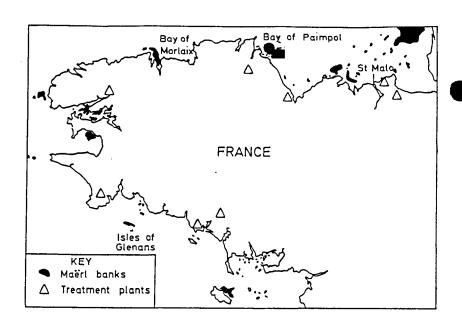


FIGURE 2

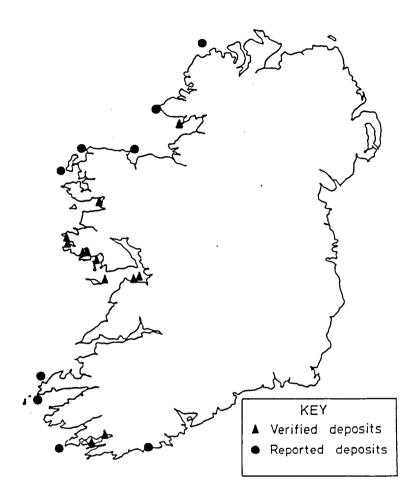
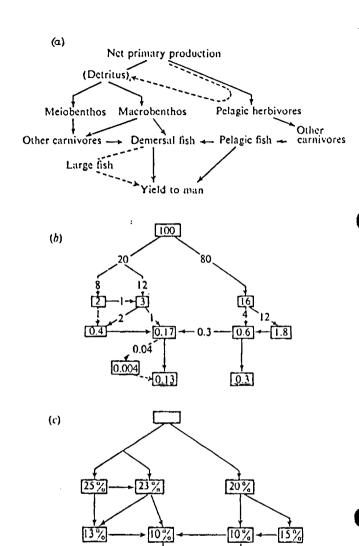
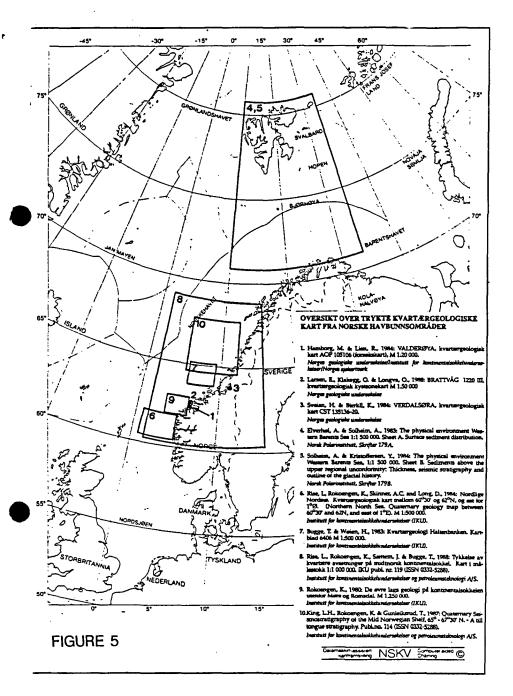
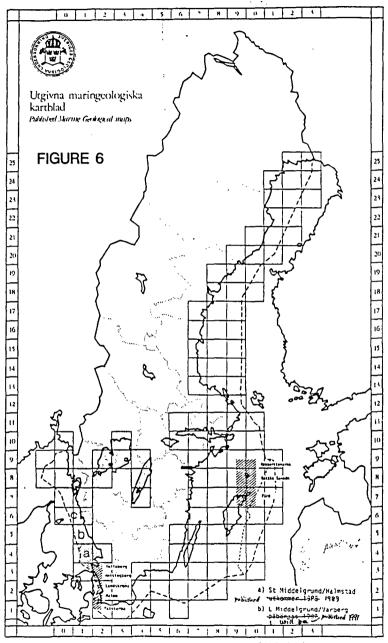
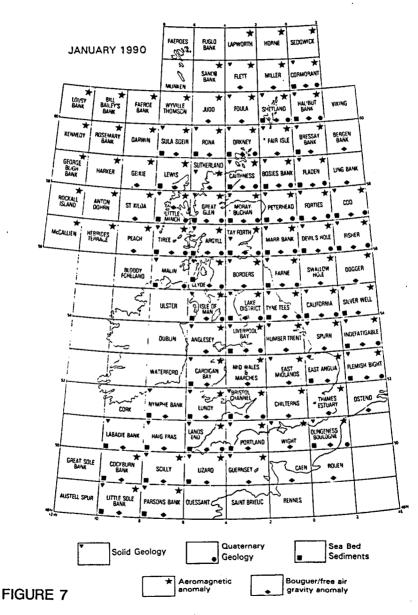
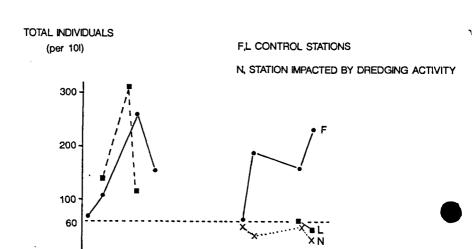


FIGURE 3

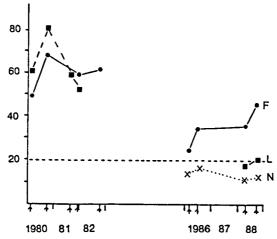





FIGURE 4



C) Fieldwork starts 1990

BRITISH GEOLOGICAL SURVEY AVAILABILITY OF MAPS 1:250 000 SCALE U.T.M. SERIES



. 1986

87 88

1980 81 82

GRAVEL EXTRACTION SITE OFF DIEPPE (EASTERN ENGLISH CHANNEL)

CHANGES IN ABUNDANCE AND SPECIES NUMBERS FROM 1980 TO 1988

Note. Species counts are based on 25I sediment samples from 1980-1982

and 10I samples from 1986-1988