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ABSTRACT

The relative sensitivity'b of,the echo' integrator systems on two ships may
be estimated from an iriter-sh1p calibration. Ordinary linear regression ls
inappropriate sinee the observations from each ship are subject to error .
Several alternative techniques are discussed. Formulae are presented for
estimating the relative sensitiv1ty and associated confidence intervals.
The recommerided estimator 1s that given by the method of maximum likeli­
hood assuming the same residual (error) variance in the observations from
both ships. They are applied to experimental data collected from different
depths. The greater the depth, the eloser are the eonfidence limits on b.

RESUME

La sens1bilite relative b,des systemes d'echo integration sur deux nav1res
peut etre estim~e par un etalonnage reeiproque des deux systemes. La simple
regression lineaire n'y eonvient pas~puisque les observations qu'on fait sur
les deux riav1res pourront subir egalement des erreurs. On discute plusieurs
techniques differentes et on presente des formules pour estimer la 'sensibilite. . . .~' .
relative et les intervalles ,de confiance qui y sont assoeies. La formule
d'estimation qU'on,recommande est cells,qui'est donrieepar la methode de
la probabilite maximale en supposant que lavariance (de l'erreur) qui reste
dans les observations soit egale sur les deux navires. On applique les
formules ades donnees experimentales reeueillies ades profondeurs 'variees.
Les limites de eorifiance sur b vont se rapproeharit avec l'aceroissement
de la proforideur.

, ,
INTRODUCTlON

When two ships are erigaged eoncurrently on an acoustie survey, the performance
of their equipment may be compared by mearis of an inter7Ship calibration
(Rottirigen, 1978). This is done by the shipssteaming in elose formation
while aseries of paired'echo integrator reaiÜngs is obtained. Suppose that
n suchpäirs are obtained, arid that,x. and y;, i = 1, 2, •• ~ " 'n, are the
observed values'ror ship'A and B,res~ectively; It is aSsUmedthat-:x'{. arid

, " . ,.'.". ".. " ""'", ' .'.. .. . ,1·
Yi are ech() ir:tteg~~tor rea~ings eorr~spol1d~ng to ,some conceptual.density
or fish D say. Howev7r, beeause ()fcharacteristies specifie to, each ship' s
sonar equipmerit arid because of the way the flsh are spatially distributed,
the observed values x. and y. will 'not be equal. It,"may be realistic to
~ssum~ that, in the a6sence ~f measurement and sampling errors, both Xi and
Yi are related in some.stoehastie sense to.the true density D; Under speeifie
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assumptions, to be discussed below, the observations x. and y. can'be
regarded as giving rise to points which deviate from afa "undeFlying" relation,­
ship

the parameters a and ß being unknown. Relationships of this type are known
as functional or structural relationships depending on the statistical
properties attributed to the observations x. and y ..
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The objective of an inter-ship cnlibration exercise is to estimate the
relationship (1), that is, toestimate the parameters a and ß along with
their standard errors or'appropriate confidence limits. The latter
are of importance in that they provide a means of indicating whether
different survey results from the two ships might be explained by
differencesin performance rather than real differences in fish density.

I THEORY
I

One model which may be postulated is that in which xi and Yi are random
variates with true values X. andIY.; that is

. 1 I 1

Xi = Xi + Idi Yi = Yi + e i

(1)

, (2)

•
where the true (expected) values Xi and Yi are functionally related according
to the law

Y=a+ßX

This model would hold if-it werelaccepted that the exp~cted vaiues
y. are both linearlyrelated to the true density D. 'That is

1 I .
X = u + v 0' ~ ~ u

2
+ v

2
' 0,1 1

so that

which implies that

Y = a + ß X

(3)

of x': and
1

(4)

•
The difficulty in estimating the parameters a and ß of equation (3) arises
from the fact that they refer to a relationship between quantities which
cannot be measured without error. This problem has been studied extensively'
by many authors, particularly Lindley (1947). A variety of estimates of the
siope parameter ß has been proposed corresponding to different assumptions
about the statistical properties'of the errors d and e. 'Some of these
models have been discussed by Pope and'Shanks .(1982). Inthe present context
it will be assumed ,that d and e are'uncorrelated with'each other and that
their variances, var(d) and var(e), are constant. It will also be assumed
that'neither d nor e are (serially) correlated in time. 'That is
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(5)

•

for all values of i and j.

If ad
2 = 0 (implying that x = X) then ß is appropriately estimated by the

slope of the regression line of y on x, namely

2b = S(xy)/S(x )

while if a 2 = 0 (implying y = Y), then the slope of the regression line of
ex on y, namely

2b = S(xy)/S(y )

should be used. If the errors are assumed to be normally distributed, these
estimators are maximum likelihood estimators, otherwise they are least
squares estimators. In ~ither c~se they are best linear unbiased estimators.
However, when neither 0d nor ° are identically zero these estimators are
no longer appropriate. Three d!fferent estimators for this model are
considered and compared in this paper. As the constant term a (the offset)
is, in each case estimated by

Use of the method of· maximum likelihood to give an estimator of the parameter
B has been studied by Lindley (1947) who noted that the method2fails t~ give
a solution unless additional information a~out 2he variances'ad and a is
available. In particular, if the ratio a / ad = A(say) is known, th~
estimator of ß is given as the solution or the quadratic equation•

a = y - bi

whatever slope estimator is employed, only different estimators of ß will
be considered in what follows.

-:-AS(XY);'O

(6)

(7)

The reason for the failure of the method of maximum likelihood has been ~hown

by Solari (1969) to be due to the fact that the solutions of the maximum
likelihood equations correspond to a saddle-point of the likelihood surface,
not to a maximum.

In the absence of any information to the contrary, a value of A = 1 would
seem a reasonable assumption in intercalibration work. The estimate of the
slope is then, by solving (7),

2 2 2 22 2 Y.
b =[ S(y ) - ~(x ) + {[S(y ) - Sex )] + 4 S (xy) }2J/2 Sexy) (8)

The construction of a confidence interval for this estimator of the slope has
been studied by Creasy (1956). She worked not with the slope and its estimator
but with the corresponding angles between the line and the positive direction
of the X-axis, ie with 0 = are tan ß and ~ = are tan b. An approximate
confidence interval for e is given by
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(13)

(12)

4

2
g = 4 t /n

2) - 2 - )2sex = {I(X1 - x) + I(x2 - x2 } /(n-2)
2 ~1 2 _ 12~

s(y ).= {I(Y1 Y1), + I(Y2 - Y2) } /(n-2)

sexy) = {I (Xl - Xl) (Y1 - Y1) +!I(X2 - x2 ) (Y2 - Y2)} /(n-2)
" 'I

The use of three or moregroups,linstead cif just two,has been proposed by
other authors but it is not clear whether such procedures,are always m0r.e
efficient. 1

A third estimator of the slope which has been advocated is the so-called
geometrie mean regression slope (Ricker, 1973)~ This estimator is·the
square-root of the ratio of the slope of the regression of y on x to that of
the regression of x on Yi that 16

b J+ tS(y2)/S(x2)}~
gm ,-

I

6 + ~ are sin {4t2 [S(x2 )S(y2) - ~2(XY)J / [(n_2)[S(x2 ) _ S(y2)]2 + 4S2(xy)]}~ (9),
In the above expression t is the appropriate value of Student's t for (n-2)
degree of freedom. The confidence interval for b is given by the tangents cf
the angle limits from (9). I
An entirely different estimator has been proposed by Wald (1940). He
considered an estimator of the form

, f .
bw = <Y2' - Y1 )/(X2 - Xl) (10)

- - , '

w~ere_(x1' Y1) is the, 'cent::e of g~avity' of half the observationsand
(x2 , Y2) the centre of grav1ty o~ the other half. Wald showed that if the
(x, y)·values included in the first half correspond to those whose X-values
are all smaller than the X-values associated with the points in the other
half, then b is a consistent estimator of ß. (That is b tends in '
probability ~o ß as n + m). Such a partitioning of the data can be
achieved provided the x-values are separated bydistancesgreater than their
errors so that the observed x's are in the same order as the true XiS.
Unfortunately, the error variance in inter-ship calibration data is likely
to be large so that incorrect allocation of SOme of the observations to
their correct group may be common. There is no apriori reason to groupthe
observations according to the order of data from one ship rather than the
other.Two slope estimates are obtained by grouping the observations on the
order ofx and y values in turn. I The validity of Waldis method may be gauged
by comparing these slope estimates. A significant difference would suggest
that too many observations had been allocated to the wrong group.

I '
Wald also derived a method for calculating a confidence interval for the
slope. These limits are given by the two roots of the quadratic equation

ß2 {g s(x2) - (x2 ,- x
1

)2} + 2ß {bJ'w (x2 _'x1 )2 g sexy)} +{g s(y2)

_ b 2 (x _x )2} = 0 ' (11)
w 2 1 I

where



where the sign 1s chosen to make (b.S(xy)> O. This estimator has been
eritieised by a number of,authors (eg Jolieoeur, 1975; Sprent and
Dolb~, 1980; Pope and Shanks, 2982)'2 It ean be shown that, if in (7)the .
value of A is put equal to S(y )/S(x ), then the estimator given by applying
the method of maximum likelihood is equal to b .' T~e da~a by t~emsel~es

eannot be used to say whether the assumption tft~t ° I 0d = S(y )/S(x ) is
a reasonable one or not. If it is then b does eo~respond to a maximum.
Intuitively the geometrie mean regressiong~lope is attraetive sinee it
eorresponds to a line biseeting the angle between,the two ordinary
regression lines. When this angle is small the geometrie mean regression
line is likely to be elose to the true relationship sought, but this is,
of course, alsotrue for the regression lines themselves and indeed for
nn eye-fitted line.

By eonsideringthe effeet of,small uneorrelated var~ation~ in the observed
parameters, and assuming that A is estimated by S(y )/S(x ), we have
derived the following approximate eonfidence interval for b •gm• b + t b {2[1-S(xy)1 {S(x2 ) S(y2)} ~] In} ~gm gm

CALCULATIONS WITH EXPERIMENTAL DATA

(14)

,

!
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I

I

I

The research vessels "Magmis Hei'n~son" (Faroe Island's) and "Scotia'; (UK)
conducted an inter-ship calibration during a biue whiting survey in April 1982.
The'three analysi~ methods diseussed above'have been compared using the data
from this ealibration.

The echo integrators were set to reeord the energy returned from three depth
channels: (1) 0 to 240m, (2) 240m to the sea bed and (3)from the sea bed to
50m above.' The ships covered a"40 mile track aling 'the edge ofthe
continental shelf north of Shetland. The water depth varied from 340m
to 500m. Thus the first ehannel did not overlap with the others, while the
second ehannel ineluded allthe eehoes from the third. The integrators were
read at one mile'intervals. 'For eaeh depth channel, therefore, 40 paired
measurements were obtained. The data from'the two ships were converted
to the same units, tonnes per square km, using the same reference target
strength of -34ctB re lkg.' '

The three sets of data are plotted in Figures 1 to 3. Also shown are the
fitted lines aeeording to the geometrie mean regression (GMR) and the maximum'
likelihood (ML) for A = 1 methods. The various slope estimates and the
associated eonfidenee,limits are shown in Table I. '

DISCUSSION

It is evident from the trend of the confidence, limits that there is iess
random scatter in thedata,from deeper water: This is to be expected. The
conical shape of the acoustic beam means that the beams will overlap more
as the depth inereases, so that a larger'proportion of the targets will be
detected by both ships. The effeet 'is weIl known, but it has provided sets
of data with convenient differences'in residual varlanee for the purposes
of this paper.
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The 'slope estimates tend
indicate a difference in

Visual inspection of the data suggests that the residual variances are not
constant, contrary to one assumption that is common to all the methods described
The concentration of points near z~ro shows relatively littlevariabillty,
particularly inchannel 3. This is not surprisin~ ~ince the data are
constrainedto be positive and many of the points are near zero, corresponding
to little or no :fish. ' I ' '
Wald's estimator does not compare weIl with the others. The confidence
limits are wider and the slope estimates are different when the groups
are selected on y values instead cf x values,'especially in channel '1.

I '
The slopes estimates are consistent1y and significantly less than 1. There
was therefore areal difference in performance between the two vessels. The
poor weather conditions at the time of the calibration may be partly ,
responsible. Wind and'ship motion induce air bubbles in the water which
attenuate the acoustic beam (Dalen and Lovik, 1981). "Magnus Heinason" had
a hull mounted transducer , while the "Scotia" transducer was in a towed
body which would reduce the aeration problem to some extent.

I ' '
to increase with the depth. This effect could
the time!varied gain of the echosounders.

I ,

The ML slope estimate is consistently lower than the GMR, although the
difference is slight except in channell. The' channel 1 data are too .
variable to be of much use for calibration, and outliers may have had a
disproportionate effect.

I
CONCLUSIONS

I
Wald's grouping method is inadequate for the analysis of inter-ship calibration
data. It is little better than simple linear regression.

. , . I
Both the ML and GMR'methods suggest a significant difference in performance
between the t~o ships, aslightly larger difference being 'indicated by the
ML estimate. The ,GMR'method has ;the intuitively unsatisfactory feature that
the slope estimate,takes no account of the association between x and y.
Consider theexample of the same :quantity being observed by two measure­
ment systems which introduce random uncorrelated errors. The expected
value of Sexy) 'is then zero. The'ML mcthod has the satisfactory feature
that the resul t is indeterminate "when sexy) is zero.

We recommend therefore that maximum likelihoodtheory with A = 1 should be
adopted as the preferred method for the analysis of inter-ship calibration
data. The slope and the associated confidence limits are estimated using
equations (8-9).
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TABLE I

Comparison of slope estimates from the "Seotia" (x)
and IIMagnus HeinasonIl (y) data. L and H are the 95%

confidenee limits (t = 2.02, degrees of freedom = 38)

Method Channel 1 Channel 2 Channel 3

Maximum b 0.25 0.51 0.56
likelihood H 0.40 0.72 0.71
().=1) L 0.17 0.33 0.43

Geometrie b 0.40 0.57 0.58'
mean H 0.53 0.67 0.65
regression L 0.28 0.46 0.51

Wald - b 0.30 0.38 0.55
group of H 0.54 0.54 0.67
x values L 0.11 0.17 0.43

Wald - b 0.75 0.62 0.59
group of H 10.92 0.99 0.74
Y values L 0.40 0.42 0.48
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FIGURE 1. CHANNEL 1 DATA. X = 'SCOTIA' AND Y = 'MAGNUS HEINASON'.
THE BE~;T F I TS; iKC()f~]) I j'\IG TO THE GE:::OrIETR 1C lvi EI;l1'1 m:CiH!::~~;~~; l 0"1
AND MAXIMUM LIKELIHOOD METHODS ARE THE DASHED AND SOLID
LI NES; m::S;PECT 1VEl_Y.
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FIGURE 2 CHANNEL 2 DATA. X = 'SCOTIA' AND Y = 'MAGNUS HEINASa~'.

THE BEST F I T~:; f~C:COR[I I hlG TO THE CiEüi·IETf~1c: HEAI" (~E(iI~E~~;~;ION
AND MAXIMU1 LIKELI~JOD METHODS ARE THE DASHED AND SOLID
LI NES HESPE::CTI VELY.



y

40

30
x

•

20

10
x

10 20 30 x 413

FIGURE 8. CHANNEL 8 DATA. X = 'SCOTIA' AND Y = 'MAGNUS HEINASON'.
THE J::E~:;T F I "n:; i~CCOI;:1) I NG TU THE m::Ol'IET(~1c l'IE"~I'o\ F\EOF\E~~;~~; lOb'
AND MAXIMUM LIKELIHOOD METHODS ARE THE DASHED AND SOLID
LINES RESPECTIVELY.


