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- : - ABSTRACT

The relative sensitivity b of the echo 1ntegrator systems on two ships may
be estimated from an 1nter-sh1p calibration. Ordinary linear regression is
. 1nappropr1ate since the observations from each ship are subJect to error.
Several alternative techniques are discussed Formulae are presented for
estimating the relative sensitivity and associated confidence intervals.
The recommended estimator is that given by the method of maximum likeli-
hood assuming the same residual (error) variance in the observations from
both ships. They are applied to experimental data collected from different
depths. The greater the depth, the closer are the confidence limits on b.

RESUME

La sensibilite relative b des systemes d'echo integration sur deux navires
peut etre estimée par un etalonnage re01proque des deux systemes. La 51mple
regression lineaire n'y conv1ent _pas. puisque 1es observations qu'on fait sur
les deux nav1res pourront subir egalement des erreurs. On discute plu31eurs
techniques différentes et on presente des formules pour estimer la sensibilité
relative et 1es intervalles de confiance qui y sont associés. La formule
d'estimation qu on recommande est cells qui est donnée par la méthode de
i la probabilite maximale en supposant que la’ variance (de 1'erreur) qu1 reste

. dans les observations soit egale sur les deux nav1res On applique les
formules a des donnees experimentales recueillies a des profondeurs ‘variées.
Les limites de confiance sur b vont se rapprochant avec l'accroissement
de la profondeur.

~

INTRODUCTION

When two ships are engaged concurrently on an acoustic survey, the performance
of their equipment may be compared by means of an inter-ship calibration
(Rottingen, 1978) This is done by the ships steaming in close formation
wh11e a series of paired ‘echo 1ntegrator readings is obtained. Suppose that

- n such pairs are obtained and that X, and y,, i =1, 2,...., n, are the
observed values for sh1p A and B. respectiveiy It is assumed that=xz and

are echo 1ntegrator readings corresponding to’ some conceptual densxty

o} fish D say However, because of characteristics specific to each ship s

. sonar equipment and because of the way the fish are spatially distributed,
the observed values x, and y, will not be equal. It-may be realistic to
assume that, in the absence of measurement and sampling errors, both x, and
y are related in some. stochastic sense to the true density D. Under specific
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- variates with true values X and

assumptions, to be discussed below, the observations x. and y, can'be
regarded as giving rise to p01nto which deviate from an "underlying" relat1on-

ship

the parameters a and B8 being unknown. Relationships of this type are known
as functional or structural relationships depending on the statistical
properties attributed to the observations X, and ¥

The objective of an inter-ship calibration exercise is to estimate the
relationship (l), that 1s, to estimate the parameters a and B along with
their standard errors or appropriate confldence limits. The latter

are of importance in that they provide a means of indicating whether
different survey results from the two ships might be explained by
differences in performance rather than real differences in fish density.

THEORY C ST

One model which may be postulated is that in which x1 and y; are random

x, = X, +
1 1

where the true (expected) values
to the law

This model would hold if"it were

y; are both llnearly related to the true den51ty D.

X=u, +v, D

-1 1

so that
which implies that

The difficulty in estimating the
from the fact that they refer to

cannot be measured without error.

by many authors, particularly L1ndley (1947).

Y. that is
i

dg y; = Y +e; (2)

Xi and Yi are functionally related according

Y=o0+8 x ' = : ~(3)

accepted that the expected values of x and
That 1s ' .

Y =‘u2 + v2:D _ :(4)

Y=oa+8X

parameters a and g of equation (3) arises

a relationship between_quantitieé which _
This problem has been studied extensively

A variety of estimates of the

slope parameter g has been proposed correspondlng to different assumptions

about the statistical properties

models have been discussed by Pope and Shanks .(1982).

" Some of these
In the present context

lof the errors d and e.

it will be assumed that d and e are uncorrelated with each other and that

their variances, var(d) and var(e), are constant.

It will also be assumed

that-neither d nor e are (serially) correlated in time. That is

2




var (di) = 04
var (e.) = o 2 (5)

1 e

=0

cov(di ej)
for all values of i and j.

If o 2 = o (implying that x = X) then B is appropriately estimated by the
slope of the regression line of y on x, namely

b = S(xy)/S(x°)

while if °e2 = o {(implying y = Y), then the slope of the regression line of
X on y, namely :

b = S(xy)/S(y°)

should be used. If the errors are assumed to be normally distributed, these
estimators are maximum likelihood estimators, otherwise they are least
squares estimators. In gither case they are best linear unbiased estimators.
However, when neither g nor ce arekidentically zero these estimators are
no longer appropriate. Three different estimators for this model are
considered and compared in this paper. As the constant term a (the offset)
is, in each case estimated by :

a = y - bx (6)

whatever slope estimator. is employed, 6n1yAdifferent estimators of B will
be considered in what follows. .

Use of the method of maximum likelihood to give an estimator of the barameter
B has been studied by Lindley (1947) who noted that the method2fails tg give
a solution unless additional information aBout Ehe variances: o and o is
available. In particular, if the ratio ¢ o4 = A(say) is known, the
estimator of B is given as the solution o% the quadratic equation

S(xy)82 - s(3%) - as(x2)]8 - S(xy) =0 (7)

The reason for the failure of the method of maximum likelihood has been shown
by Solari (1969) to be due to the fact that the solutions of the maximum '
likelihood equations correspond to a saddle-point of the likelihood surface,
not to a maximum. ’

In the absence of any information to the contrary, a value of A = 1 would
seem a reasonable agsumption in intercalibration work. The estimate of the
slope is then, by solving (7),

¥é1/2 s(xy)  (8)

b=[Sy9) - s(x3) + sy - s(xD1% + 4 s%xy)

The construction of a confidence interval for this estimator of the slope has

been studied by Creasy (1956). She worked not with the slope and its estimator

but with the corresponding angles between the line and the positive direction
of the X-axis, ie with 6 = arc tan 8 and § = arc tan b. An approximate
confidence interval for 6 is given by '




6 + % arc sin {at? [8(x7)S(y°) - S%(xy)1 / [(n-2)[S(x?) - 5(y%) 1% + 4s®(xy) 1}% (9)
In the above expression t is the approprlate value of Student's t for (n-2)
degree of freedom. The confidence interval for b is given by the tangents of
the angle limits from (9).

An entirely different estimator has been proposed by Wald (1940). He
considered an estimator of the form

b, =y, -y; M, -Xx) ‘ (10)
where (x,, ¥,) is the 'centre of'gravity of half the observations and
(§2, ) the centre of gravity of the other half. Wald showed that if the
(x, y) values included in the flrst half correspond to those whose X-values
are all smaller than the X-values associated with the points in the other
half, then b. is a consistent estlmator of 8. (That is b tends in
probability Yo B as n + =), Such a partitioning of the data can be
achieved provided the x-values are separated by distances greater than their
errors so that the observed x's are in the same order as the true X's
Unfortunately, the error varlance in inter-ship calibration data is lxkely
to be large so that incorrect allocatlon of some of the observations to
their correct group may be common. There is no a priori reason to group- the -
observations according to the order of data from one ship rather than the
other. ' Two slope estimates are obtained by grouping the observations on the
order of x and y values in turn.‘ The validity of Wald's method may be gauged
by comparlng these slope estlmates. A significant dlfference would suggest
that too many observations had been allocated to the wrong group.

Wald also derived a method for cqiculéting'a_confidence interval for the
slope. These limits are given by the two roots of the quadratic equation

B2 1g s(3) ~ (%, - §)2) + 28 (b, (R, = %)% - g s(ayh +(g 55D
2 (R, - %)% = 0 N ) B . . (11)
where
g=4tn |
sGP) = (50xy - %)) + Ix, = %,)°) /(n-2) _
s = (2lyy - 502 + By, - 5% /) | (12)

stry) = (2 (x) = %)) (y) = F;) +[2xy = X5) {yp = §p)) /(n-2)

The use of three or more groups;i1nstead of just two, has been proposed by -
other authors but it 1s not clear whether such procedures are always more
eff1c1ent

A third estimator of the slope whlch has been advocated is the so-called

geometric mean regression slope (Ricker, 1973). This estlmator is "the
square-root of the ratio of the slope of the regression of y on x to that of
the regression of x on y; that is

bgn = + SGASEEE )




where the sign is chosen to make (b.S(xy))> 0. This estimator has been

criticised by a number of authors (eg Jolicoeur, 1975; Sprent and

Dolby, 1980; Pope and Shanks, %982).2 It can be shown that, if in (7) the

value of A is put equal to S(y )/S(x"), then the estimator given by applying

the method of maximum likelihood is equal to b n’ 'TEe daEa by taemsel es

cannot be used to say whether the assumption that o / o, = S(y )/s(x") is
- . . X e d N ’

a reasonable one or not, If it is then b m does correspond to a maximum.

Intuitively the geometric mean regression-slope is attractive since it

corresponds to a line bisecting the angle between. the two ordinary

regression lines. When this angle is small the geometric mean regression

line is likely to be close to the true relationship sought, but this is,

of course, also true for the regression lines themselves and indeed for

an eye-fitted line.

By considering the effect of. small uncorrelated variation§ in the observed
parameters, and assuming that A is estimated by S(y~)/S(x”), we have
derived the following approximate confidence interval for bgm'

byn + € by (156 8GR sPn om0

CALCULATIONS WITH EXPERIMENTAL DATA

The research vessels '"Magnus Heinason" (Faroe Islands) and "Scotia" (UK)
conducted an inter-ship calibration during a blue whiting survey in April 1982,
The'thrée analysis methods discussed above'have been compared using the data
from this calibration. ’ : o

The echo integrators were set to record the energy returned from three depth
channels: (1) O to 240m, (2) 240m to the sea bed and (3)from the sea bed to
50m above.’ The ships covered a 40 mile track aling the edge of the
continental shelf north of Shetland. The water depth varied from 340m

to 500m. Thus the first channel did not overlap with the others, while the
second channel included all the echoes from the third. The integrators were
read at one mile intervals. For each depth channel, therefore, 40 paired
measurements were obtained. The data from the two ships were converted

to the same units, tonnes per square km, using the same reference target
strength of -34dB re 1kg. ' '

The three sets of data are plotted in Figures 1 to 3. Also shown are the
fitted lines according to the geometric mean regression (GMR) and the maximum’
likelihood (ML) for A = 1 methods. The various slope estimates and the
associated confidence.limits are shown in Table I. o

DISCUSSION

It is evident from the trend of the confidence limits that there is less
random scatter in the data from deeper water. This is to be expected. The
conical shape of the acoustic beam means that the beams will overlap more
as the depth increases, so that a larger proportion of the targets will be
detected by both ships. The effect is well known, but it has provided sets
of data with convenient differences in residual variance for the purposes
of this paper. ' ' S



Visual inspection of the data suggests that the residual variances are not

constant, contrary to one assumptlon that is common to all the methods descrlbed here.
The concentration of points near zero shows relatively little varxablllty,
particularly in channel 3. This 1s not surprising since the data are

constrained.to be positive and many of the points are near zero, correspondlng

to little or no fish.

Wald's estimator does not compare well with the others. The confidence
limits are wider and the slope estimates are different when the groups
are selected on y values instead of x values, especially in channel 1.

The slopes estimates are con51stent1y and significantly less than 1. There
was therefore a real difference 1n performance between the two vessels. The
poor weather conditions at the t1me of the calibration may be partly -
responsible. Wind and ship motion induce air bubbles in the water which

attenuate the acoustic beanm (Dalen and Lovik, 1981). "Magnus Heinason" had
a hull mounted transducer, while the "Scotia" transducer was in a towed
body whlch would reduce the aeration problem to some extent. ‘

The slope estlmates tend to increase with the depth. This effect could
indicate a dlfference in the time varied galn of the echosounders.

The ML slope estlmate is con51stently lower than the GMR, although the
difference is Sllght except in channel ‘1. The channel 1 data are too
variable to be of much use for calibration, and outllers may have had a
disproportionate effect.

|
CONCLUSIONS

Wald's grouping method is 1nadequate for the analysis of 1nter—sh1p callbratlon
data. It is little better than simple linear regre551on.

Both the ML and GMR methods suggest a 81gn1f1cant difference in performance

between the two ships, a sllghtly larger difference being 'indicated by the ‘
ML estimate. The GMR 'method haslthe 1ntu1t1vely unsatisfactory feature that

the slope estlmate takes no account of the association between x and y.

Consider the example of the’ samelquantity being observed by two measure-

ment systems which introduce randbm uncorrelated errors. The expected

value of S(xy) is then zero. The. ML method has the satisfactory feature

that the result is indeterminate’ when s(xy) is zero.

We recommend therefore that maximum llkelihood theory with XA = 1 should be
adopted as the preferred method for the ana1y51s of inter—shlp calibration
data. The slope and the associated confldence limits are estlmated using
equations (8- 9)
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TABLE I

Comparison of slope estimates from the '"Scotia" (x)

and '"Magnus Heinason' (y) data.

L and H are the 95%

confidence limits (t = 2.02, degrees of freedom = 38)

Channel 3

Method Channel 1 Channel 2

Maximum b 0.25 0.51 0.56
likelihood H 0.40 0.72 . 0.71
(r=1) L 0.17 0.33 0.43
Geometric b 0.40 0.57 0.58-
mean H 0.53 0.67 0.65
regression L 0.28 0.46 0.51
wald - b 0.30 0.38 0.55
group of H 0.54 0.54 0.67
x values L 0.11 0.17 0.43
wWald - b 0.75 1 0.62 0.59
group of H 10.92 0.99 0.74
y values L 0.42 0.48
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FIGURE L. CHANNEL | DATA. X = ~SCOTIA AND ¥ = <MAGNUS HE INASON -,
THE BEST FITS ACCORDING TO THE GEOMETRIC MEAN REGRESSTON
AND MAXIMUM LIKELIHOOD METHODS ARE THE DASHED AND S0LID
LINES RESPECTIVELY.
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FIGURE 2. CHANNEL 2 DATA. X = “SCOTIA AND Y = “MAGRUS HEINASON-.
THE EBEST FITE ACCORDING TO THE GEOMETRIC MEAN REGRESSTOM
AND MAXIMUM LIKELIHOOD METHODS ARE THE DASHED aND SOLID
LINES RESPECTIVELY. ‘ -
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FIGURE 3. CHANNEL 3 DATA. X = <3C0TIA- AND Y = <MAGNLUS HEINASON-.
THE BEST FITS ACCORDING TO THE GEOHMETRIC MEAN REGRESGTON
AND MAXIMUM LIKELIHOOD METHODS ARE THE DASHED AND S0LID
LINEES RESPECTIVELY. :



