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The most important abundance estimate - in any case the most used - is the
catch per unit effort.

When data for catch and effort have been collected the first task to be done
is a statistical analysis of the figures in order to find the best estimates of the
quantities of interest for the study of population dynamics.

This analysis of catch and effort data is completed so to say, when the
statistical distributions in question are specified, and this paper will deal with
some distributions that are often met with in practice, and with some seldom realized
difficulties that arise in connection with the distributions. The paper contains very
little new and is only thought as an attempt to clear things up a little.

The dream of a student of population dynamics - as John Gulland has already
mentioned - is a situation, where the instantaneous fishing mortality coefficient is
proportional to the effective overall fishing intensity. This situation is realized,
if the mathematical expectation of the catch y is proportional to the product of effort
and total number of fish N in the (small) area in question. This we write:

E(y) =kxxfxN
where k is a factor of proportionality.

This is of course a question of defining f in the right way, and that is
exactly the question with which Gulland dealt in his paper. I shall, therefore, simplify
the situation by assuming that f is well defined for the individual ships, which means
that £ can be measured accurately except for fishing power.

To fix ideas let us take trawling as our standard example. We will suppose
that hours of fishing is an exact measure of effort except for fishing power. The model
can now be written:

— Al

E(y) = llx { xVN

where !l is the fishing power of the ship in question, ,E‘number of trawling hours, and
N the total number of fish in the area. k has been taken as 1, which means that all
gquestions of vulnerability, availability, etc. are set aside and the effort is

simply Tx ¥ .

We will write a single catch as:
- indh xLxN+& =w02xTx xN x A
vhere § and L) are related to fishing power, and &€ and Aare stochastic components. We

shall first deal with fishing power and examine the consequences of three different
distributions of y:-
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A) y normally distributed (m,c). The distribution function is:
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B) y log-normally distributed (a, 5/). Distribution function:
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C) y negative-binomially distributed. The distribution is discrete and
determined by two parameters m and k. The probabilities are:

P(y=r) = (1+ &) k[ R R (=275 (r=0,1,2,000002)

and

E(y) =m
me
k

V(Y): m +

If in case Am =¢ T Nand o (Q\ T the expectations for two ships with identical
fishing times are:

B(yp)=¢xT x ¥=TixTx W

E(y,) 9, x W 2 NE'E:?_x Tx N

or =2 . The assumption V(y)=%2T  says that one haul of L hours duration is
statistically equal to T one hour hauls.

e IF we want to compare the fishing powers of two ships, we have to estimate

1 ]_/ Il = 5 /Jt s> which means that we have to estimate the ratio of the means of
two normal distributions.

If the shlps have taken n L -hour hauls each in the area in question, the simplest
estimate for $1/9 2 is
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The distribution of z is
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when ¢, TN » ('-:)A'\ﬁ:this is very nearly:
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As £(z) ~o 1/2% for z—>+ oo it follows that E(z) does not exist, and it canbe
shown that there is no better estimate for 9‘/ ,, .

The situation is not hopeless though, as confldenoe limits can be found for
91/,, by means of z.

As ¥ - ¥» (9,/9,) is nomally distributed (O,\/‘;%t/n + (S182)% G2 T /n)
we have that

(yv1 - (51/92) yz)
s(1/n + (9/9,)%/n)"

where s is the combined estimate for .—1 \/ L ,1) is t-distributed with 2n - 1 degrees of
freedom, and this gives us the following confidence intervals:
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If myp; ) s we gets

;‘__ e
z + ts(l + 22)2/y2 \1‘*”.
which is the same as the "naive" formula
AR
V(z) =~,’q ’/ny% i/nyz = f,-E (—(1 + 22)/115/5

gives.

In case B and ( X , )( ) = (logw TN, 0) - A log-normally distributed (0,0) -
our assumptions give
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When comparing two ships we want to estimate -T,/— = (YWi/u3.) e
and it follows that Ti/"T = “ifu, only if oy = o, .

The best estimate of log (WyAn~) is of course:

~5 = 1og yz - 1°g yl = (log H Y2)/n
(Log T y1)/n

B 2 <
which is normally distributed (log(““‘/mﬂ \/ (012 + oy )/n) and thus e has the
expectations
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1) For simplicity we assume & o=,
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This formula shows that e /is unbiased for T if n is great. If this
is not the case the estimate & Wwa
= _
e~ e 2n

has much smaller bias.

In the first part I have been thinking of a situation where two ships bave
been fishing randomly in an area. Let us now think of comparative trawlinge
and formulate as follows:

il T & = 1.

i3 “4x L x Ay 5y We,x Lx A, x A 11
- T .. o= e T

Vo4 sz . 5% Ai * Tos --U_{x o X Ai x A 21

with obviocus conventions of notation.

In case A it is natural to try to use regression analysis, and we must
distinguish between two cases:

1) N, is a stochastic variabel.
2) N, is not a stochastic variabel.

Let us in case 1) suppose that (yl, yz) is normally distributed

| B T TR s 7,0, T° 3%
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The regression coefficient is
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and thus the regression coefficient is an underestimate of the fishing power
unless oy < Jf i’[‘“‘)‘- g

In case 2) we have to suppose o3 < O, which gives:

\ﬂ‘l W <
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and this demonstrates that the normal regression coefficient is an unbiased
estimate of the fishing power.

If op RL:, O the regression coefficient is a biased estimate of the fishing
power, but as far as I know it is very difficult to do something rational to
repair this. It is, however, clear that oy << (variation in yz) is just as good
as o ==z O.

In case B) with A log-normally distributed (0, o) we get:

Yii o L) g
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which says that yli/&Zi is log=-normally distributed (log i' ’\jcﬁ. + o5 ).
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the situation is quite analogous to the former log-normal case.

The third distribution, the negative binomial distribution, is often found when
the fish are foming shoals. One can show that the best estimates for k and m are

determined by = 5
fe &L (V@) - 2t K,
n n
O
and Z : r-1
s b B L) i
n=11=0

As far as I know there is no simple way to handle the negative binomial distribution
in respect to fishing power. But if the material is great enough it might be possible
to pool the data and operate with the catch in n hauls, and in this case the central
limit theorem leads over in the normelly distributed case.

I have dwellt quite a lot on the question of the power factor, and the reason
for this is that it gives a good opportunity to specify the distributions. I shall
now take for granted that we are able to specify the fishing power, which again means
that we are able to measure the real fishing effort accurately.

The catch model is simply:

EkyivﬂN

£5 /

We shall now examine the best estimates of N that the different distributions give
rise to.

If in case A) it is supposed that o2 =(%)2f it follows that:

E (y|f) = N
and

vV (y|£) =£{} 2p

N is consequently the regression coefficient in an ordinary regression with zero
interception. The best estimate of N is:

N = _Z_X.__.. ; (v(§)=.£_2__)
>t > f

If it on the other hand is supposed that:

v (y|r) = 2 £2

the best estimate is:

Y 1
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N = —— (v (N) = _EkL__. )
n

The difference between the two hypothesis can be interpretated in the following way:

As suming V(y‘f) = qu f is equivalent to saying that the catch taken by an effort
f is statistically equal to f catches each caught by means of an effort 1. This will
be the case if the fish are distributed at random.
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If on the other hand V(y|f) = ¢ 2¢2 the fish are clustered, which causes that o
single haul with effort f is statistically equivalent to f x y and not %o zz.y.

For a log-normal distribution the effort was f =e °5‘2‘ , but if £% W T is
used instead of f, ons get:

log — = log N + logA

f-)"(

and supposing that o is independent of f the following best estimates are found:

e

log N = log X

-~ S 0-2
N = o088 iine

_ The assumption that o is independent of f is the same as the assumption
9 vV (yl£) =@ee.
As mentioned earlier the negative binomial distribution is found when the fish are

forming shoals, which again means that heavy clustering takes place. One would expect
the following catch probabilitiess:

-K
i 5 f N k'+ noei] £ N =
P(y=mn)=(1+ =t ( St fﬁ*:?§;~')

with

E (y|f) = £N

V (y|f) = £N + £282/k
If k is great one get:

V (y|f) = fN = E (y|f)
. and the distribution is actually a Poison distribution, which is very nearly normal

with o2 = §92f and we are back in a known situation.
If k is small:
v (y]£) = £2N2/k

and it seems natural to use the formulaes from the other normal case.

This paper has only dealt with very simple situations, and it has by no means
exhausted the matter. It is, however, my hope that it has cleared up some often
discussed points, and I also hope it can provoke a useful discussion.
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