Evidence of long-term change in the summer Chukchi Sea zooplankton communities

Elizaveta Ershova
Russell R. Hopcroft
Ksenia N. Kosobokova

et al.
A rapidly changing Arctic

A "new normal" climate in the Pacific Arctic?

September sea ice extent from the Ice Atlas of the Northern Hemisphere (Hydrographic Office, 1946)

Sea ice extent in September 2012
Chukchi Sea – a gateway into the Arctic

ACW – Alaska Coastal Water
BSAW – Bering Sea/Anadyr Water
SCW – Siberian Coastal Water
WW – Winter Water
Plankton – sentinels of climate change?

- Is there a change in abundance, biomass or composition in summer zooplankton communities in the Chukchi Sea over the given period?
- What are the main factors driving zooplankton variability in the Chukchi Sea on larger scales?
- Are Pacific species being advected farther north during the summer season?
Seven decades of studies

- 28 historical and modern datasets on zooplankton, 1946-2012
- Excludes recent studies confined to the shelf break and in NE Chukchi
- CTD data mostly available
- Older datasets mostly unpublished

Sea ice extent during sampling period

June July August September
Challenges

- Different spatial coverage and seasonal timing (June-September)
- Large gaps in study years (i.e. 1955-1969; 1993-2003)
- Sampling gear:
 - Russian studies mainly use small, fine mesh nets (Juday, ~150μm)
 - American studies mainly use coarse Bongo (~500μm) nets
- Different methods for calculating biomass
- Very different taxonomic resolution
Methods

- Stations assigned to water mass types based on temperature and salinity data
- Abundance and biomass values standardized to ind. m\(^{-3}\) and mg DW m\(^{-3}\)
- Trends in abundance and biomass established using linear mixed-effects models
 - **Random effects**: station location, gear type
 - **Fixed effects**: year, month, water mass type, temperature, salinity, PDO and AO index (6-month average)
Water masses

Water mass
- Alaska Coastal Water (ACW)
- ACW/BSAW
- Bering Sea Anadyr Water (BSAW)
- Melt Water (MW)
- MW/SCW
- Siberian Coastal Water (SCW)
- Winter Water (WW)

Depth
- Bottom (15m)
- Surface (15m)
Zooplankton biomass

- Very high variability
- Average increase in biomass ~ 10 mg DW/m3 per decade
- Other significant factors related to biomass:
 - Month sampled
 - Water mass type
 - PDO/AO signal
BSAW communities

- Indicator species for Bering Sea water
- Large enough for all developmental stages to be captured by coarse nets; common enough to be sufficiently represented by fine nets; least likely to be misidentified

- *Calanus glacialis*
- *Eucalanus bungii*
- *Neocalanus spp.*
- *Metridia pacifica*
Abundance in BSAW

Calanus glacialis

Metridia pacifica

Neocalanus spp.

Eucalanus bungii
Factors driving variability

Eucalanus bungii
Neocalanus spp.
Metridia pacifica

Significant relationship to water column temperature (**short-term**)

Calanus glacialis

No relationship to temperature, negative correlation to PDO signal (**long-term**)

![Graph showing abundance vs. temperature and PDO index](image-url)
Calanus glacialis distribution

- **Pacific population:** C4-C5 sub-adults
- **Chukchi (resident) population:** C1-C3 larval stages; few adults
Are Pacific species being advected farther north?

Neocalanus spp.

![Graph showing mean abundance north of 70°N.](image)

- **1946**
- **1947**
- **1976**
- **1991**
- **1992**
- **2012**

Mean abundance north of 70°N:

\[p < 0.001; R^2 = 0.31 \] (with 1949 removed)
Conclusions

- Distribution of water masses highly variable but follows overall similar trend
- Significant increases in zooplankton biomass have been observed in recent study years
- Abundances of advected Pacific copepods have increased, with abundances correlated to water temperature
- Advected Pacific species may be now reaching higher latitudes during the summer months
- These findings are consistent with other studies, reporting northward shifts in distribution of planktivorous fish, marine mammals and birds
Thank you for your attention!

Thanks to:

Kathy Crane of NOAA for support of the RUSALCA program

Kohei Matsuno, R. John Nelson, Atsushi Yamaguchi, Lisa Eisner for providing datasets

Elena Markhaseva, Alexei Pinchuk and Zoological Institute of the Russian Academy of Sciences for help recovering historical data

This work is sponsored by the Cooperative Institute for Alaska Research at UAF with funds from the National Oceanic and Atmospheric Administration under cooperative agreement NA08OAR4320870