Monitoring Spawning Activity in Cabo Pulmo National Park
Using Molecular Identification of Fish Eggs and Larvae

Ana Luisa M. Ahern1, Jaime Gomez-Gutiérrez2, Arturo R. Sanchez-Uvera2, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, Alice E. Harada1, Brad Erisman1,4, Carlos A. Sánchez-Ortiz3, Octavio Aburto-Oropeza1

1Marine Biology Research Division, Scripps Institute of Oceanography, California, USA; 2Centro Interdisciplinario de Ciencias Marinas, IPN, La Paz, Baja California Sur, Mexico; 3Parque Nacional Cabo Pulmo, Baja California Sur, Mexico; 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, Port Aransas, Texas, USA; 5Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico

Located in southern Baja California, Mexico, Cabo Pulmo National Park’s 27 square miles of teeming waters is a shining example of a well-managed marine protected area. A recent study determined that in just 14 years fish biomass increased by 463%, the largest measured in a marine reserve worldwide. While there is an abundance of data collected via traditional monitoring techniques such as diver surveys, little is known about the species specific spawning activities that occur in Cabo Pulmo. This study monitors the fish spawning activity through molecular identification of eggs and larvae collected in the park.

Why Ichthyoplankton? Why Genetics?
• Reveal the species composition, timing and location of spawning activities
• Complement diver-conducted surveys
• Can be used as a baseline to compare shifting populations and spawning patterns
• Provide evidence of the success of marine protected areas
• Aid in the assessment and management of marine ecosystems
• Molecular identification is more accurate and reliable than traditional morphological methods

Results
• Identified 112 species from 16 orders, 49 families and 94 genera
• An additional 31 species did not match to existing voucher specimens in online databases, revealing even greater diversity
• Identified species from diverse natural histories including reef-associated species and highly migratory pelagic species
• Captured rare, understudied mesopelagic species such as Regalecus glesne (giant oarfish), revealing new information regarding spawning location and timing
• Several popular recreational fishery species were present, including Nematistius pectoralis (roosterfish) and Coryphaena hippurus (dolphinfish)

Methods
• Weekly plankton tows in CPNP conducted by David Castro, dive master from Cabo Pulmo
• Biologists at CICIMAR-IPN in La Paz, BCS separate eggs from zooplankton, make preliminary morphological identifications, and send eggs and larvae to SIO for analysis
• Universal fish primers are used to amplify cytochrome oxidase subunit 1 (COI) or 16S ribosomal RNA through polymerase chain reaction (PCR)
• Successfully amplified samples sent offsite for sequencing
• Results compared to sequences in GenBank and FishBOL, online databases of sequences from vouchered specimens

Why Ichthyoplankton? Why Genetics?
• Distinctive peaks in spawning activity were revealed for several species, potentially triggered by full moons
• Eggs of some species were present throughout the time series whereas others showed restricted spawning seasons
• Revealed inaccuracy of morphological identification
• Captured species and activities that would be missed in traditional survey methods utilized in Cabo Pulmo

Introduction
Located in southern Baja California, Mexico, Cabo Pulmo National Park’s 27 square miles of teeming waters is a shining example of a well-managed marine protected area. A recent study determined that in just 14 years fish biomass increased by 463%, the largest measured in a marine reserve worldwide. While there is an abundance of data collected via traditional monitoring techniques such as diver surveys, little is known about the species specific spawning activities that occur in Cabo Pulmo. This study monitors the fish spawning activity through molecular identification of eggs and larvae collected in the park.

Boxplot showing egg and larval richness by week. The box represents the middle 50% of the data, with the median marked by a line within the box. The whiskers extend to the minimum and maximum values, excluding outliers.