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Approaches to stock assessment when
data and time are limited
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~100 species
~600 quota management areas

NZ Ministry for Primary Industries 2

Since we are going to be spending the rest of the day discussing data-poor stock
assessments, | thought that | would start off with a brief motivating example.

As with many jurisdictions, New Zealand has a large number of species which are
harvested. Unlike many jurisdictions, virtually every commercially fished species is
under the Quota Management System. For each species, there up to ten Quota
Management Areas.

Currently, there are around 100 species in the Quota Management System, and a total of
about 600 Quota Management Areas.
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Bentley & Stokes (2009) Contrasting paradigms for fisheries management decision making: how well do they serve data-poor fisheries?
Marine and Coastal Fisheries 1:391-401

This is an old graph which | know at least some of you have seen before. | have not had
the time to update it, it its based on 2008 data. But | have dusted it off because | think

it illustrates the situation well.

| have put each of the 600 odd quota management areas into bins according to their
approximate annual value shown on a log scale. Each fishstock is then coloured
according to their type of stock assessment:fully quantitative (shown in red),
qualitative assessment (for example based on trends in catch-per-unit-effort, shown in
yellow) and those that are assumed to be at or close to virgin (usually because there
has been little fishing) shown in green. The remainder, shown by this grey area are
those Fishstocks for which we have no real scientific assessment of stock status

You can see that the majority of stocks with an annual value over $1 million dollars have
formal assessments and in most cases these will be done regularly and to a high
standard.

But the key message provided by this graph is that although the stocks with no
assessment are low in value they collectively represent 80% by number, 65% by
weight and 51% by value.

| suspect that if you were to repeat this analysis for other jurisdictions you would find
similar pattern: the stocks of lowest value lack assessments, but collectively their
value can be substantial.
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Low value fisheries are usually both data-poor and time-poor

data-poor fishery = time-poor scientists
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Generally then, a stock that is data-poor is one that is low in value. And because it is low
in value there is usually limited time available to do a stock assessment.

S0, when we are discussing how to assess data-poor fisheries, | think it is important that
we acknowledge that, usually, we will also have time-poor fisheries scientists.

In some ways, this is implicit in our approach to data-poor stocks, but | think that it is

worthwhile making it explicit because, time-poverty may affect the stock assessment
approach as much as data-poverty.
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Approaches

Approach A: different models for different tiers
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S0, how should we approach stock assessments where we have both limited data and
limited time?

One option is to say that data-limited stocks require fundamentally different methods for
stock assessment. Perhaps then, we need to define tiers of data richness and see

which method performs best in each tier.

One issue with this approach is that for a stock at the top of one of these tiers we are not
necessarily making the most of the data that we have available for it.

Also, we might end up finding that a stock gets stuck in one of these tiers instead of
moving up this continuum in terms of data availability.
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Approaches

Approach B: same models,
continuum of data & time richness, continuum of certainty

Data and time
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An alternative approach is to say lets just use the same models for all stocks regardless

of whether they are data-poor or data-rich.

After all, there is no fundamental biclogical difference between data-poor stocks and
data-rich stock other than that data-poor stocks tend to be smaller in size.

The same models of population dynamics can be applied to these stocks it is simply that
we will have less certainty in our results because we have less data.

One potential advantage of this approach is that it is based on a continuum of data-
richness and for a particular stock, as more data becomes available we simply move

up the continuum in terms of certainty.
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Approaches

Strategic estimation Tactical estimation
More complicated Less complicated
More integrated Less integrated
More statistical More empirical

Focus on estimating...

Stock status (Bt/Bo) Current biomass (Bt)
Reference points (e.g. Bmsy) Current exploitation rate (Ft)
Parameter uncertainty Forecast biomass (Bt+1)

Wwithin management procedure
approach the basis of...

operating models to guide management procedures
strategic fisheries which define tactical fisheries
management decision making management decision making

...or more ad hoc
decision making

Punt (2008) Refocusing Stock Assessment in Support of Policy Evaluation. 5th World Fisheries Congress p. 139-152. with additions 7

Perhaps we don't need to choose between these approaches, perhaps both has their
place.

In a 2008 paper, Andre Punt suggested that we need to distinguish between two types of
stock assessment models based on their purpose rather than their data requirements:
strategic models and tactical models.

Strategic estimation involves methods that are more complicated, more integrated and
more statistical whereas tactical estimation is usually simpler, relies on fewer data
sets and can be more empirical.

Strategic estimation is the type of stock assessment methodology which we have
become familiar with for data rich stocks. It is focussed on estimating stock status, the
current biomass over virgin biomass, and reference points like Bmsy. It also places an
emphasis on estimating parameter uncertainty.

In contrast, tactical estimation is focussed on estimating things like current exploitation
rate and short term forecast. Despite being less sophisticated these estimation
methods may actually be more robust at estimating these variables than a fully
integrated assessment.

Within the management procedure approach, strategic estimation acts as a basis for
operating models to test alternative management procedures. And tactical estimation
can form the basis of model-based management procedures.

The dichotomy between strategic and tactical fisheries estimation is orthogonal to data
richness. That is, both data-poor and data-rich stocks can have both strategic and
tactical estimation approaches applied to them.
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“The world does not stand still while
scientists get their minds in order”

Boston, 19 July 2013

Better management performance

The vital aspect of this dichotomy between strategic and tactical estimation is that we

need both.

Under the management procedure paradigm we do relatively intensive strategic

estimation that forms the basis of our operating models in a management strategy
evaluation(MSE). The MSE then informs the choice of management procedure.

The management procedure defines the annual crank-the-handle process to generate a

tactical management action. We might start off with a empirical, model-free

management procedure of the type that Helena, Doug and others have described
already. Or, we might move towards one that includes some form of tactical estimation
using simple stock assessment models.

For this conference, the key aspect of this diagram is that the two aspects of fisheries

estimation are separated. They move forward in parallel. On one side our

understanding of fisheries improves, on the other the management of the fishery
improves. In many ways, stock assessment has been trying to do these two things at

the same time, and perhaps not doing a very good job as a consequence.

At the start of this conference, Sidney Holt gave us a quote: “The world does not stand
still while scientists get their minds in order”. In some ways, this is the mantra of
tactical estimation. But we can turn this quote around as a justification for strategic
estimation and say, “Science should not stand still while scientists try to put the world

in order”

Since this is a conference about stock assessment, in the rest of this talk, | am not going
to be talking about management procedures or MSE at all. | want to focus on strategic

estimation and how we can do if for data-poor stocks.
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Conditioning an operating model

Priors

Data

How can we make it work?
How can we make it work in less time?

Priors

Time spent

Data

Data-and-time rich Data-and-time poor

So, in the rest of this talk | want to examine how we can go about doing strategic
estimation. That is conditioning an operating model for use in an MSE.

| am not going to be talking about models per se. As | have eluded to earlier | see that

when doing strategic estimation we should use the same model as we do for data rich
stocks.

| am going to explore how we might be able to adapt each of these phases of a stock
assessment for data and time poor stocks.
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28 0.28862 -2.26513e+04 | 29 -0.02185 1.11525e+04 | 30 -0.55631 1.86506e+03
31 -0.18909 -1.28621e+04 | 32 -1,00000 1.89158e-01

- final statistics:

32 variables; iteration 891; function evaluation 1000

Function value 1.7141e+04;

Exit code = 3; converg criter 1.0000e-04

Var Value Gradient NEls Value Gradient Value Gradient
0.12007 9.1748%e+04 | 2 .03675 5.96381e+03 -0.02603 9.10302e+03
-0.07690 2.98622e+03 5 .12645 -2.30860e+02 -0.12928 -1.61688e+03
0.02218 1.59789%e+03 8 .08644 4.23414e+03 0.05304 1.50819e+03
-0.05917 -2.18066e+03 11 .08100 4.56425e+03 -0.03567 -2.37606e+03
-0.01439 -2.29920e+03 14 .17077 5.73974e+03 -0.06132 -2.72996e+03
-0.15252 -2.84605e+03 17 .04386 -8.98939e+02 -0.05553 -2.61683e+03
0.07449 -1.13073e+03 20 -0.21048 -2.84585e+03 0.12450 -4.54297e+02
0.07746 -1.77148e+03 23 -0.07312 -2.93977e+03 0.07162 -2.88985e+03
0.29048 -2.50846e+03 26 -0.03193 -3.01208e+03 1.73840 -2.50855e+03
0.28862 -2.26513e+04 29 -0.02185 1.11525e+04 -0.55631 1.86506e+03
-0.18909 -1.28621e+04 32 1.89158e-01

Estimating row 1 out of 32 for hessian

Estimating row 2 out of 32 for hessian

Estimating row 31 out of 32 for hessian
Estimating row 32 out of 32 for hessian

Hessian does not appear to be positive definite

| call this the Black Screen of Death. It is a screen that many of you will be familiar with,
this age structured model has failed to converge, we have a parameter on the bound,
and a Hessian that is not positive-definite.

At this stage many of us will start doing things like adjusting our likelihoods, fixing
parameters, down-weighting data and other naughty things to get that damn Hessian
to be positive definite.

It is one example of the challenges we face when trying to apply data-rich stock
assessment methods to data poor stocks.

10
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“The Working Group rejected
the assessment due
to the paucity of data”

And this is what you might call the White Screen of Death.

Once you have done all that work trying to do a data-poor assessment the peer
reviewers give you a big fat F for fail.

You go away with you head down and vow never to do a data-poor stock assessment
again.

And, more importantly, fisheries managers don't get a quantitative basis for managing the
stock.

| suspect, that many data-poor stock assessments never see the light of day because of

a fear of rejection at the peer-review stage. In many ways we have set a high bar with
data rich stocks on what we consider to be acceptable limits on uncertainty.

11



Nokome Bentley WCSAM2013 Boston, 19 July 2013

Priors Borrowing and imputing knowledge

A key means of injecting

knowledge into data-poor
assessments
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For data-poor fisheries, Bayesian priors provide a key means of injecting existing
knowledge into the estimation process.

Put another way, they provide a method for “taking from the data-rich to give to the data-
poor”.

It is worthwhile noting that using the same models for data-poor and data-rich stocks
facilitates this transfer of knowledge because the parametrisations will be shared.

Univariate prior probability distributions are widely used in stock assessments. While
these will continue to be an important form of prior, for data-poor stocks there is
perhaps even greater value in the priors on bivariate and multivariate relationships
between parameters.

For data-poor stocks multivariate relationships offer a form of imputation, filling in the

gaps of what we don't know using what we do know. Importantly, priors provide a way
of probabilistically making those imputations.

12



Nokome Bentley WCSAM2013 Boston, 19 July 2013

Priors Mulltivariate priors
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We can take this further and look at the multivariate relationships between population
dynamics parameters.

This is a Bayesian network that developed for some population dynamics parameters.
For those of you are not familiar with the term Bayesian Network it is really akin to a
series of linked correlations between variables, in this case population dynamics

parameters.

The main thing to note about this is that we don't need to rely just on meta analyses to
develop these types of multivariate priors.

This part of the Bayesian network comes from some work done by He and other where

they develop a multivariate prior for steepness based on population persistence
theory.

13



Nokome Bentley WCSAM2013 Boston, 19 July 2013

Priors A library of priors?

Case-specific priors

Lmax In a time-limited assessment we need to

/\ rapidly use priors

|_ Need a library of peer-reviewed
mat univariate and multivariate priors

| | Implemented as software library
and integrated into assessment

packages

Multivariate prior

Y Act as defaults with ability to

M override when case-specific priors
/\ available or wanted {e.qg. on M)

In a time-limited assessment we need to rapidly use priors. We don't have a lot of time
spare to go back to the literature or do our own meta-analyses.

| think that we, as a stock assessment community, need a library of peer-reviewed
univariate and multivariate priors which we could quickly make use of in our data-poor
assessments.

Ideally, this library of priors would be implemented as software library and ultimately
integrated into assessment packages like Stock Synthesis.

| don't think we want to impose a standard set of generic priors, but they could at least

act as defaults with ability to override them when case-specific priors are available or
desired.

14



Nokome Bentley WCSAM2013 Boston, 19 July 2013

Priors Priors on scale (K) parameters
Can we also put priors on “scale” (carrying capacity) parameters?

Catch history alone informs the lower bound of B, K Ry:
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Posterior on RO in 1973 when only catch history was available

What information do we have to inform the upper bound of 5,?

So far the priors that | have been discussing, and which have been the focus of research
to date, are priors on what we might call “rate” parameters, those that define the
temporal dynamics of the stock.

But a key challenge in stock assessment, particularly for data-poor stocks is estimating
what we might call “scale” parameters, such as carrying capacity and virgin unfished
biomass.

Catch history is actually quite informative for the lower bound of these parameters. For
example, if there has been 50 years of catch in excess of 10,000 t we can say with
some confidence that virgin recruitment is at least 10, 000 t. In this way, catch history
informs the lower bound on scale parameters.

This example, shows a posterior distribution for RO generated from a sampling-
importance-resampling algorithm with a delay-difference model driven by a catch
history. No data has been fitted to but a constraint that the exploitation rate has not
exceeded 0.99 is applied. As you can see, this contraint excludes low values of RO.

However, we often lack information on the upper bound of scale parameters and this is
where a prior might be particularly useful.

15
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Priors Scale (K) parameters
Usuallyignore what we know about ool B )
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community data etc toinform stock-
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Priors on B, are likely to be diffuse but,
for data-poor stocks, probably better
than nothing: upper bound 10,000t or
1,000,000¢t?

Leathwick et al (2008) Predicted catch per standardised tow from a habitat suitability model for Ribaldo ( Mora moro)
MacKenzie et al (2003) Spawner-recruit relationships and fish stock carrying capacity in aquatic ecosystems. Mar Ecol Prog Ser 248: 209-220

One way to generate priors for carrying capacity might be to use what we know about the
spatial scale of habitat. Traditionally in stock assessment we have relied heavily on
temporal contrast in data sets to inform estimates of BO.

Spatial contrast in data may provide a means of defining priors. For example, hierarchical
meta-analyses and habitat suitability models could potentially be combined to define
priors on BO per unit of effective habitat for species, genera or functional niches of
fish.

Again, such priors would allow for imputation for data-poor stocks by providing a means
for stock specific data on habitat to be used to generate a stock specific univariate
prior on carrying capacity.

Developing such priors would not be a trivial task. It would rely on compilation of
numerous data sources and require extensive analyses.

The resulting priors are likely to be diffuse and probably more suited to demersal species

with restricted movement. However, for data-poor stocks the ability to inject additional
data in the form of effective habitat areas is likely to be helpful.

16
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Understanding your data

Understanding the data you putinto any assessment:

Essential
Time consuming
Case specific

SHORTCUTTING
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Efficiencies from automating data processing and
presentation but will always require significant proportion
of time

A key aspect of any stock assessment, be it data-rich or data-poor, is the data you put in
to it.

Regardless of the stock assessment methodology, understanding the data that is being
used will always be essential, time consuming and case specific. In this regard there
are few, if any, short cuts.

Certainly there are efficiencies to be gained from automating data processing and
presentation, however gaining a full understanding of the potential biases in the data
will always require a significant proportion of the time in a stock assessment.

It is true that in a data poor context, there is less volume of data to deal with, but often

that data will be of lower quality and arguably requires more thorough grooming and
pre-analysis.

Just because we may be using less data intensive stock assessment techniques does
not mean that we can excuse ourselves of the task of understanding potential biases
in our data and how that may be deceiving the estimation process.

17
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Data Using soft data

Focus has been fitting to “hard” data e.g.survey time series, age
compositions

When you are data-poor you start to look at “soft” data:

i.e. subjective “priors” on model variables rather than on
parameters

e.g. beta prior on stock depletion in Depletion-based Stock
Reduction Analysis

e.g. uniform prior on change in biomass between two years

* e.g.normal prior on mean length of catch based on poor quality
data 50 years ago

Injection of additional data that may otherwise be ignored

Trade-off between making use of all information and adding junk -
requires care in how informative/diffuse priors are.

Having said that, one area where gains may be possible for data-poor stocks is in the
use of what we might call “soft data”.

Traditionally, stock assessments have focussed on fitting to hard data such as survey
time series of biomass estimates or age and length compositions.

However, in the data-poor context and given the theme of using as much of the data that
is available, we have started to look at more subjective, more qualitative data to
inform the estimation process.

In essence these amount to “priors” on model output variables. Formally, they are
likelihoods, because priors are what we use for model input parameters. However,
they are similar to priors in the way that they allow for subjectivity in their definition.

An example of this approach is seen in DB-SRA in its “prior” on depletion.

While such an approach may be unnecessary in the data-rich situation in data-poor
assessments it is important because if allows the use of information that would have
otherwise been ignored.

However, as with the definition of priors on parameters, care is required and there is a
tradeoff between adding useful information and simply “making stuff up”.

18
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Dominated by formal likelihoods, quasi-Newton minimisers and
Hastings-Metropolis MCMC

Alternative algorithms may be more robust and less
temperamental in data-poor situations

Alternatives for fFitting to data.e.q.

» Approximate Bayesian Computation (ABC) and “Synthetic
likelihood”

» Fit to summary statistics of the data rather than entire data set
Alternatives forsampling posterior distributions e.g.

» Sampling-importance-resampling (SIR)

* Adaptive MCMC

Applications and simulation studies required to see if these help

Over the past two decades the algorithms that we use in stock assessment estimation
have been dominated by formal likelihoods, quasi-Newton minimisers and Hastings-
Metropolis MCMC.

While these seem to serve data-rich stocks well, new, alternative algorithms for
parameter estimation may be more robust and require less tuning in data-poor
situations.

In particular, Approximate Bayesian Computation and Wood's Synthetic Likelihood, which
fit to summary statistics of data, rather than to entire data sets, may prove to be more
robust when data is of poor quality.

Similarly, alternatives to Hastings-Metropolis MCMC for sampling posterior distributions,
have been used recently for data-poor stocks.

Further real world applications as well as simulation studies are required to see if these
alternatives offer benefits to estimation in data-poor contexts.

19
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Bentley & Langley (2012) Feasible stock trajectories: a flexible and efficient sequential estimater for use in fisheries management precedures
CJFAS 69 1-17 20

This is an example, of applying some alternative estimation algorithms.

In this example, we took a relatively data-rich stock and threw out some of the data or
condensed it down to summary statistics. In doing so, we artificially created the type
of “data-random” situation which we commonly come across — a fishery with bits and
pieces of different types of data.

We used a sequential SIR algorithm and defined constraints imposed by the various bits
of data in a approach that is similar to Approximate Bayesian Computation or
Synthetic Likelihood.

Not only did we find this to be an efficient approach to incorporating disparate sources of

information, it also illuminated aspects of the estimation process that may not have
been evident with traditional algorithms.

20
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Peer review of any assessment:

Essential
Time consuming
Case specific
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Efficiencies possible in automated production and
presentation of diagnostics

Onus on analyst to presentcomprehensive but concise
diagnostics andindicate what really matters

Onus on peers to learn what really matters

21

Peer review should be a part of all stock assessments.

This is a copy-and-paste of my data slide because as with understanding your data,
peer-review is always going to be essential, time consuming and case specific.

Again, there are efficiencies to be had from the automated production and presentation
of diagnostics.

Particularly in a data-poor context there is an onus on the analyst to present a
comprehensive but concise set of diagnostics and to indicate the aspects of the
assessment that really matter or which the methodology is particularly sensitive to.

There is also an onus on reviewers to learn what aspects of the methodology and results
really matter.

21
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| have very briefly gone through some key aspects of stock assessment methodology
and looked for ways in which we can improve its application to data-poor stocks. |
have suggested that for some of those aspects, such as understanding the data used
and peer-review, there is perhaps little scope for reducing the time required for an
assessment.

However, | want to come back to this slide and remind you that the real time and cost
savings come in only doing strategic estimation occasionally.

In the intervening time, we use a management procedure which may involve the types of
tactical estimation methods for data-poor stocks that we will see in today's talks.

22
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/\ WARNING

“Data-poor” methods may be used as an excuse to
under Fund data collection and stock assessment

Improper use could lead to suffocation

These are not magic bullet end points that will solve the
world's fisheries management problems

These are pragmatic approaches to robust fisheries
management along the pathway to better understanding

Non-use could lead to insanity

23

| am going to end off with a warning.

There is a real risk that if we overplay the benefit of data-poor methods that those who
fund fisheries research will see them as an excuse to under-fund both data collection

and stock assessment.
To borrow a phrase “Improper use could lead to suffocation”.

There are a number of steps that we as a community can take to mitigate against that.
These include using simulations to demonstrate the management benefits of

additional research and monitoring.

But perhaps the most effective thing we can do is not present our work as magic bullet
endpoints but rather as pragmatic approaches for providing robust fisheries
management along the pathway to better understanding of our fisheries.
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Catch-Only Methods: Cure or Placebo
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The opinions being presented in this talk are those
of the authors and do not necessarily represent the
views of either author’s agency.



An aside:

Sgt. Rick Remalia

Traditional treatment for pain involves drugs such as opiates:
* Side effects

* Drug interactions
* Leads to addiction/abuse
* Longterm cost

To be continued

Photo from blog.innergateaccupuncture.com



MSY is the starting point for
Annual Catch Limits (ACLs) in the U.S.
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AMs are associated with the ACL
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Year in the ACT control rule 1 DD 4+ MSY

=
2

: © 80 -
National Standard 1 =
=

= B0 -
@

e 40 4
7

20

Bo
g
D T T T T m T T T T 1
SY
0 200 400 600 800 1000
Stock size

FAO




MSY + Catch-Only Stocks = Challenge

(our obligatory equation)

Magnitude of challenge is proportional
to number of catch-only stocks involved



Status of catch-only stocks in the U.S.

Fishery # Stocks # of ACLs used # of ACLs % of ACLs
Management managed by for involving involving
Council ACLs management catch-only catch-only
methods methods

Mid-Atlantic 10 10 0 0%
New England 39 33 1 3%
North Pacific 100’s 62 10 16%
Pacific 147 40 9 23%
Gulf of Mexico 37 24 11 46%
South Atlantic 62 37 17 46%
Western Pacific 100’s 101 57 56%
Caribbean 100’s 67 67 100%

TOTAL 100’s 374 172 46%






Proliferation of Catch-Only Methods

Scalar approaches (Restrepo et al., 1998)

Depletion-Corrected Average Catch (MacCall, 2009)
Depletion-Based Stock Reduction Analysis (Dick & MacCall, 2011)
ORCS Working Group Approach (Berkson et al., 2011)

Catch-MSY Method (Martell and Froese, 2012)

New methods continue to be developed

— (e.g., Thorson et al., In Prep.)



Methods either:

* |[nvolve a summary statistic of the catch over a
specified time period (scalar approach)

OR

* Require additional information not available
for most catch-only stocks, such as
— Full time series of the catch
— An estimate of stock depletion



Evaluation of Methods
(excerpts)

 Wetzel and Punt (2011)
— DBSRA and DCAC highly sensitive to depletion parameter.

 Wiedenmann et al. (2013 — in press — NAJFM)

— Stocks with slow or medium life histories with a history of
overexploitation were particularly challenging.

— Conservative control rules were required to produce
probabilities of overfishing < 0.5 when information was
biased.

e Carruthers et al. (In prep)

— Only methods that accounted for depletion provided good
performance at low stock sizes.



Methods applied to catch-only stocks in the US

Fishery # of ACLs % of ACLs Methods Used
Management involving catch- involving
Council only methods catch-only

methods
Mid-Atlantic 0 0% ---
New England 1 3% Scalar/ DCAC
North Pacific 10 16% Scalar
Pacific 9 23% Scalar, DCAC, DBSRA, Other
Gulf of Mexico 11 46% Scalar
South Atlantic 17 46% Scalar
Western Pacific 57 56% Scalar
Caribbean 67 100% Scalar/ ORCS WG Method

TOTAL 172 46%



Recap

e Catch-Only stocks are a part of 46% of all ACLs
in the US.

— The Southeast, Caribbean, and Western Pacific
have the greatest number and percentage.

* Methods that utilize supplemental information
perform better overall.

— Methods are getting more sophisticated.

— These will likely remain applicable to a small
proportion of catch-only stocks.



Back to our aside: In treated patients:

* 1/3 report that the pain goes away
* 1/3 report that the pain diminishes
* 1/3 report no improvement

Sgt. Rick Remalia

Ry
A

L W
P o-:\/t
MO
B

The military is now using alternative %
medical technigues such as acupuncture.

“The first treatment where ... I've
actually seen a really big difference”
Photo from army.mil

Photo from NPR.org
Stats from stripes.com



How are these two systems similar?

* Military — noted for being reluctant to change.

— Changed paradigm, allowing their doctors to think/
act/treat differently to benefit the system.

* Fisheries policymakers may want to do the
Same.
— Change the paradigm away from MSY-based ACLs
for all stocks, allowing their stock assessment

scientists to think/act/treat differently to benefit
the system.



If not MSY-based ACLs, then what?

 Many alternatives including:
— Space-based management (Marine Protected Areas)
— Effort-based management

— Territorial user right fisheries
 Answers are not straight forward.

— Fishery-specific

— Social/Economic/Political considerations

* Large role for stock assessment scientists in
developing and testing the likely effects of alternatives
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Evaluating data-limited methods
of setting catch-limits
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Data is not information, information is not
knowledge, knowledge is not understanding,
understanding is not wisdom.

Clifford Stoll

Life is made up of a series of judgments
on insufficient data, and if we waited to
run down all our doubts, it would flow
past us.

Learned Hand



Objectives

Based on data-limited methods, life-history types
and broad objectives of the U.S. fishery
management system we aimed to quantify:

* the performance of different data-limited
methods for setting catch-limits over a range of
life-history types

e value of information



Management Strategy Evaluation

> Move forward in time

v

Update operating model

Generate fishery data (Catch,

effort, depletion, abundance)

OFL determined by
data-limited method

OFL modified by ABC
control rule




Management Strategy Evaluation

Operating models

Data-limited
methods

Imperfect
information

Performance
metrics

> Move forward in time

v

Update operating model

Generate fishery data (Catch,

effort, depletion, abundance)

OFL determined by
data-limited method

OFL modified by ABC
control rule




1. Operating models

Six life-history types or ‘stocks’, n =10 000
\Y/ Steepness CV

recruitment

Mackerel 0.2 0.45 0.5
Butterfish 0.8 0.55 0.9
Snapper 0.09 0.65 0.6
Porgy 0.22 0.4 0.55
Rockfish 0.18 0.75 0.4
oll= 0.06 0.55 0.5

These are mean values: parameters were sampled from uniform
ranges typically with a CV of 20%



2. Data-limited methods for setting the
overfishing limit (OFL)

e DB-SRA  (Dick and MacCall 2011)

depletion, M, B,,./B,, F,;s//M, catch, age at 50% maturity
 DCAC (MacCall 2009)

depletion, M, B,,.,/B,, F,s,/M, catch
* F/M ratio (e.g.0.5,0.75, 1)

Bcurrent' /VI, F MSY/ M
e Life-history analysis (Beddington & Kirkwood 2005)
B.,....v length-at-first capture, K ;

e Catch percentiles (OFL = median of historic catches)

catch OFL = Fye * B

current



3. Imperfect information

Log-normal (mean = 1) CV’s for multipliers

Bias Imprecision

M 0.5

Frie/ M 0.8

BB 0.2

KvonB 0.2

Length at 1st capture 0.5

Catch 0.05-0.3
Depletion 1 0-2

B 1 0-2

current



4. Evaluating performance

The Magnuson-Stevens Act (MSA) National Standard 1
(NSG, 2009) requires that “conservation and
management measures shall prevent overfishing while
achieving, on a continuing basis, the optimum yield
from each fishery”

Implied are two reference quantities:
* Probability of overfishing
* Yield



Performance
B<0.5B,,,

Mackerel Rockfish
P.. Yield P.. Yield

Median catch 10 Yrs m h

POF = % probability of overfishing Yield = % of ‘optimal yield’



Performance
B<0.5 BMSY

Mackerel Rockfish

P, Yield P, . Yield

Median catch 10 Yrs 89 12 95 5
DBV IAWA P76 o] [SNd[ey) 81 16 J§ 38 24

DCAC 40 % depletion 19 36 24

DB-SRA 13 64 | 5 48
DCAC 78 27 59 37
Life History Analysis

Fvmsy/M = 0.5
Delay-Difference

Current Catch

POF = % probability of overfishing Yield = % of ‘optimal yield’



Performance

B<0.5B,,,

Mackerel

P

Median catch 10 Yrs 89
DB-SRA 40% depletion k:}!

12
16

DCAC 40 % depletion 19
DB-SRA 13 64
Life History Analysis

Fvmsy/M = 0.5

Delay-Difference
Current Catch

POF = % probability of overfishing

Yield P, . Yield

0.5B,,;y <B<B,y
Mackerel Rockfish

P.. Yield P.. Yield

22 65
21 68

Rockfish

95 5
38 24

36 24
5 48
59 37

3
12 61

Yield = % of ‘optimal yield’



Sensitivity to imperfect information / value of information
(DB-SRA and the mackerel stock)
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Value of information

Standard deviation in yield among 10 percentile ‘blocks’ of each input

W EY G

Obs err

Median Catch - 10 Yrs



Value of information

Standard deviation in yield among 10 percentile ‘blocks’ of each input

Mackerel
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DB-SRA 40%
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DCAC 40 % depletion &
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Life History Analysis
Fmsy/M = 0.5

Delay-Difference




Value of information

Standard deviation in yield among 10 percentile ‘blocks’ of each input

W EY G Rockfish
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Conclusions (1/2)

e Setting catch limits to historical catch percentiles
performs similarly to using current catch

* Well-informed delay-difference models could
perform worse than data-limited methods
(imprecise survey + Fy,.,/M) due to the
assumption of temporally stationary productivity
/ fishing efficiency

e Often, more precautionary buffers (lower ABC
lead to both higher yields and lower probability
of overfishing



Conclusions (2/2)

* Often stocks assigned ‘data-limited” status
have a greater number of data available that
could provide large increases in management
performance

e Spatial effects were not important in these
simulations of data-limited methods



Next

Extend MSE to new data-limited methods and

control rules based on: catch curve analysis,
SPR, relative abundance / CPUE

Acknowledgements
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assessments off the U.S. west coast:
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models
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Evolution of fisheries models

Mark- Size- Catch Biomass Age/size- Integrated Sim. Bayesian
Recap comps Eq. dynamics structured analysis testing analysis
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e Spatially-explicit; time-
varying parameters; multi-
species; ecosystem models
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Evolution of fisheries models
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Evolution of fisheries models

Mark- Size- Catch Biomass Age/size- Integrated Sim. Bayesian
Recap comps Eq. dynamics structured analysis testing analysis

¢
) Beverton ,hpl/( ,
LI
or -Holt- n
9 Ow .
9es Vth Ricker
explosion
P Mcq
‘s
”91,58

Devolution: “Back to
the soup”

N\a?¥ FISHERIES



U.S. west coast groundfish (

Groundfish FMP (est. 1982)

90+ species |
Longevity: 5-200+ Fishery

e « Lat. range: 32°-49° N
* Multiple factors
 States
Rockfishes Roundfishes e Sectors
 Vessels
* Gear types
Nearshore « Data
Shelf * Types
* Quality

©, NOAA Slope * Quantity
o' FISHERIES

Elasmobranchs
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U.S. west coast assessment succession
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Radiation of data-limited approaches
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DB-SRA

Dick and MacCall 2010,2011

2010: Applied to 45
non-assessed stocks to

get Overfishing limits

(OFLs)
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DB-SRA “Simple” SS
Dick and MacCall 2010,2011 Cope 2013
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DB-SRA

Dick and MacCall 2010,2011
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Dick and MacCall 2010,2011
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Comparing parameterization:
productivity
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Testing & adapting

Wetzel in prep.
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Comparing assessment results: ex
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The diversity of approaches
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The diversity of approaches
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Summary & recommendations

1. Advancement in data-limited approaches
* Already being applied to management
* Prioritize stocks for assessments
 Adapt MSA for data-limited approaches

2. Retaining diversity of approaches
» Different data requirements
* Different parameterizations and linkages
 Continued and controlled testing

3. General framework: build toward “rich” assessments

4.Devolving “rich” assessments

 What data is telling you

* Informative content of data-limited approaches
@ NOAA
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“Nothing in Biology Makes Sense
Except in the Light of Evolution”

— T. Dobzhansky
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“Nothing in Biology Makes Sense
Except in the Light of Evolution”

— T. Dobzhansky

“Nothing in Fisheries Science Makes
Sense Except in the Light of...

Life history invariants?”
Selectivity?”

Catchability?”



“Nothing in Biology Makes Sense
Except in the Light of Evolution”

— T. Dobzhansky

“Nothing in Fisheries Science Makes
Sense Except in the Light of... we
are still looking’
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The Effect of Selectivity and
Spatial Scale on DB-SRA

Brandon Owashi
David Sampson

Yo




/
Important DB-SRA Assumptions

Selectivity curve matches the maturity curve

Generally aggregates large portions of data together
despite potentially distinct regions



Spatial Scale

1 Region
2 Fisheries

2 Regions
2 Fisheries

shutterstock - 17367712

shutterstock - 17367712
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Justification

Unlikely selectivity curve is always equal to maturity
curve

e Immature fish often caught in recreational fisheries

Help determine the potential benefits (or
consequences) from local or regional management
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Justification

Unlikely selectivity curve is always equal to maturity
curve

e Immature fish often caught in recreational fisheries

Help determine the potential benefits (or
consequences) from local or regional management
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Objectives

Determine how the performance of DB-SRA is affected
when:

e Selectivity assumptions are violated

e There are two distinct regions that are treated as one



Methods

Generate data — generic rockfish (no movement)
e Two regions (A and B): only F history and selectivity differ
 Total (data summed from region A and B)
e Calculate “true OFL’

Run data in DB-SRA

Calculate relative error (RE) between estimated OFL and
“true OFL”
Compare RE (through paired T test) for:

 Violations of selectivity assumptions

e Sum of estimated OFL from region A & region B and total
estimated OFL
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Default vs. True Ratio Values

e Default values if the true values are not known

Default (Dick & MacCall 20m):

T

Rockfish



Experimental Design

Position of selectivity curve compared to maturity
curve

e Ahead

e Same
e Behind

F history

e Constant
e Increasing
e Domed
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Experimental Design

Position of selectivity curve compared to maturity
curve

e Ahead

e Same
e Behind

F history

e Constant
* Increasing
e Domed



Experimental Design
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“Selectivity Position
Default

—=

Both.SA Both.SS Both.SB
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S/ m vs. Total  comn
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Conclusions

Differences when data has selectivity curve that is not
equal to the maturity curve

e Potentially develop mechanism that could allow for the

a0, selection to change

Under certain circumstances, the sum of the estimated
OFLs from two regions produced a higher estimated
OFL than aggregating the data together before
running DB-SRA



4.07 - Extending the principal of
Beverton-Holt Life History Invariants
for length based assessment of SPR

Adrian Hordyk & Jeremy Prince*

Centre for Fish, Fisheries MURDOCH n
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Research PERTH, WESTERN AUSTRALIA
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Meta-analysis

Collected high quality biological parameters for range of
marine species (Gislason et al. 2010 — Criteria used).

For each species:

* Growth model

* Natural mortality (M)

* Size-fecundity model or maturity ogive
* Length — weight model

Examined patterns life history strategies

-



SPR at Size
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SPR at Size

SPR

0.0 0z 04 06 0.8 1.0

Standardized Weight




" SPR at Size: r- vs. K- strategists
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SPR at Size: r- vs. K- strategists

Haliotidae
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SPR at Size: r- vs. K- strategists
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Beverton-Holt Life History Invariants

M/k=1.5
L. /L.=0.66
M x Age,, = 1.65

Fec. ~ Adult Wt.

0.0 0z 04 0.6 0.8 1.0
Standardized Weight
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Meta-analysis & Beverton (1992)

Lm/Loo — 3/(3+ M/k)

Lethrinidae
Acanthuridae
Scaridae
Gobiidae
Lutjanidae
Scombridae
Sebastidae
Cheilodactylidae
] + Cottidae

< Sillaginidae
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Unfished Length Composition
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Length Based SPR Estimation Method

: expected unfished length
distribution

Frequency

0.04

o
(@)

0.12

0.08

S .

Unfished

M
()

HHHHHHHM

02 027 052 QIFf 1.01

Length Class

Standardised to L,



Length Based SPR Estimation Method

: expected unfished length

distribution
selectlwty F|shed
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- length frequency of catch
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-
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Important Assumptions

Length frequency of catch representative of exploited stock
Asymptotic selectivity

Same growth curve or female length data

Knowledge of maturity at size

Equilibrium method

-



Calibration against Stock Assessments

Neoplatycephalus richardsoni
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Calibration against Stock Assessments

Pacific Hake

Merluccius productus
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Merluccius merluccius

LB-SPR

LM | PR

1.2

0.8

0.2
1

0.0

T 1
1980 1985 1990 1995 2000 2005 2010

Years

-

Calibration against Stock Assessments

Northern Hake — ICES dataset
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Calibration against Stock Assessments

Merluccius merluccius

Northern Hake — ICES dataset
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Conclusion

Meta-analysis

BH-LHI

Application

-

M/k ratio defines life-history strategy & Size
composition e.g. tuna are just scaled up anchovy.
Conceptual framework for borrowing information
from data-rich species.

Only covers a small subset of the species in the
meta-analysis.

Productivity of K-strategists parameterised by
BH-LHI have been over-estimated.

Cost-effective estimation of SPR & F/M from
length-data, L, & meta-analysis for
Data-poor and small scale fisheries.



Acknowledgements

Thank you

Funding

David and Lucile Packard Foundation
Marine Stewardship Council

The Nature Conservancy

Murdoch University

Data & Assistance
Kotaro Ono, Sarah Valencia, Keith Sainsbury, Neil Loneragan

-



Calibration against Stock Assessments

Atheresthes stomias
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Estimation Model

Model input parameters: Estimated parameters:
M/k N F/M
L
ES >— Female parameters
cV, .. S150& Sy95
Lsp& Lgs — SPR
. L=Lyax P
S arg min PL
MLE (SLSO:SL95» F/M) = (S1s0, Spos, F/M) z OLIOHO—PL
L=Lpin
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Goals and motivation

Ability to recover stock status for unassessed
stocks

Test the performance of 4 simple methods

Range of deterministic and stochastic
scenarios

Critically evaluate performance relative to a
limited set of performance measures

Distill high-dimensional information



PLEASE DO NOT CITE WITHOUT WITHOUT PRIOR CONSENT OF THE AUTHORS

Method comparison
—
| Empitical | Mechanistic

Model Modified panel Modified Catch-MSY  COM-SIR SSCOM
regression
Method *Log-linear *Schaefer model with  Schaefer + *Schaefer + effort
regression estimated r+K effort dynamics dynamics
*Reference: *Reference: FishBase (r °Bayesian *State-space
RAM Legacy +K) + catch (depletion) model Bayesian model
Input Catch; life- Catch; priors for r+K; Catch; Catch,
history, fishing  depletion (from peak- depletion; depletion priors
history catch) priors for r+K; (life-history,
rate of effort others)
Reference Costello et al. Martell and Froese Vasconcellos Thorson et al. (In
(2012) Science  (2012) Fish and and Cochrane review) CJFAS
Fisheries (2005) Alaska

Sea Grant
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Full Factorial Deterministic Design

Initial depletion o
(ID)

SilelaielgEl (85 Constant effort
(ED) (EDO):

Effort

Time-series 20

length (TS)

Life-history (LH) ™ @ [F]eI=lelle
*Gislason et al (SP)

2008

A S N (N T

ED model with  One-way trip Roller Coaster (RC):
a=1 (Bmsy)and (OW):
x=0.6 (ED 0.6):

Time Time Time

‘Gadoid’
(D)

3*4*2*3 = 72 simulated stocks in full factorial design
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Full Factorial Stoc astlc e5|gn
Factor  lievlls  Jievelz  lievls  Jtevels

Initial depletion (ID) 0% 30% 60%

Effort dynamics (ED)
is = 5
Time Time Time Time

Time-series length (TS) it 60

Life-history (LH) ‘Clupeoid’ ‘Gadoid’ (D) “Tuna’ (LP)
(SP)

Autoregressive process [0 0.6
error on recruitment
variability AR(1)

Recruitment variability [[V¥A 0.6
(sigmaR)

Catch error (sigmaC) 0 0.2

576 simulated stocks with 10 replications



Hexagon supercomputing for full

factorial analysis
Double blind:

— Simulation set-up independent
from methods ‘developers’:

* True biomass, F and LH not
disclosed

* Only Catch timeseries, Linf, tmax
and tmat were provided

576 (scenarios) x 10
(iterations) x 4 (methods) =

23,040 data poor assessments

For agreed convergence level
(MCMC,SIR) requires 19.5 CPU
years on single processor

Completed work in walltime
of 7.5 days on Hexagon cluster
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Determining model performance

* Proportional Error: measure of bias

(estimated — true)

PE =
true

e Absolute Proportional Error (APE): measure of error
(bias + precision) .y

APE = estimated — true |

rue

— We used Mean APE (MAPE) or MPE

e Other diagnostics examples (not shown here):

— Posterior Predictive Score (PPS)
— Coverage (of estimated vs. true biomass)



Example Fits of B/B,,.

 Black line is ‘true’
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W method id
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& A \/\/\ [\ COM.SIR
@\ /) ,\ \ N Costello
\ / \ VA SSCOM
AV AN :
VAN ¥
T—
Year
Demersal, ED = 0.6 Demersal, ED=0 Small pelagic, ED = OW
ID = 60% ID = 0% ID = 30%
AR=0 AR=0 AR =0.6
Recruitment var = 0.2 Recruitment var = 0.2 Recruitment var = 0.6

Catch error=0 Catch error=0 Catch error=0.2
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random effects tree, AR1

0.29
/ z”=935e+3 1°°°/D Based on Proportional error

ED = EDO,EDO0.6,0W

0.019
n=701e+3 75%

ED = EDO,EDO.6

RC

1.1
n=234e+3 25%

TS >= 40
ow

<40
-0.027 0.58 0.66 2
n=469e+3 50% )\ n=232e+3 25% ) n=179e+3 19% n=55e+3 6%

method_i = CMSY,Costello

1.3
n=26e+3 3%

LH = DE,LP

0.86
n=17e+3 2%

COM.SIR,SSCOM

2.5
n=29e+3 3%

LH = DE,LP

SP

2.3
n=8636 1%

AR <04

0.86
n=4317 0%

0.99
n=2160

2.5
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Based on MAPE, therefore all are positive and target =0

TS=20

CMSY

CMSY
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25%

ED = OW, RC 2045 1450 1250 1015 ED=0,0.6
CMSY 100%
1365 2660912 337 4 COM.SIR
50% 680 1184 338 678
50% _
/ NS=60 ID=07,1 __ ’ ID=04
/\ ~
Panel Regression COM.SIR CMSY
330233 624 252 364 1015 132 409 316 169 206 269
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Summary of Stochastic results

 CMSY is top performer

CMSY 202 253
COMSIR 138 125
Panel regression 130 127
SSCOM 106 71

* But, Mondrian plots reflect a diverse model space
* Main trait determining performance?

— Effort dynamics: more important than choice of
method



Caveats to Diagnostics/Performance

* Stock representivity:
— All life-histories not represented by 3 ‘types’

e Penalized models:

— Model implementation constrained by simulation
framework:
* ‘Reduced form’ - Panel Regression
* Uninformative priors — SSCOM, COMSIR
* ‘Real life’ comparability:

— No comparison to data-rich assessments (yet)



Limitations/Caveats contd.

Not meant to replace full stock assessments

Recommendation: best performers used only
for understanding large-scale patterns

For management: should have MSE first

Applicability: some know-how needed to
implement models
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CIEM

ICES’ new approach to data-limited
stocks aids sustainable management of
fisheries and provides an extension to
their advisory framework

Carl M. O’Brien, Anne M. Cooper and Ihigo Martinez

WCSAM, 17-19 July 2013

Boston, USA
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and Baltic Sea
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W Assessed m Not assessed

Extent of data-limited stocks

In EU waters
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e \/essels less than 12 m more dependant
on data-limited stocks than larger
vessels.

e Pelagic stocks mostly covered by
assessments; invertebrate stocks least
covered by assessments.

e Limited coverage of deep-water stocks by
assessments.

Data-limited stocks

In EU waters
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e Briefly summarise the significant
achievements within ICES’ science and
advice with respect to data-limited
stocks

Outline of presentation
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e Before 2012, ICES provided no
quantitative advice for data-deficient
fisheries.

e Since 2006 the European Commission’s
annual policy statement has defined
data-deficient TAC rules

— Increasingly formalised pragmatic rules
e.g. 15% TAC reduction for declining stocks

Context
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e Recognise different levels of
data/knowledge about stocks

e Combined assessment methods and
management decision rules

e Explicitly incorporate uncertainty and
precaution

New approach needed!




ICES

ICES WKLIFE REPORT 2012
CIEM

ICES ADVISORY COMMITTEE

ICES CM 2012 /ACOM:36

The Workshop or d on LIFE history traits
and exploitation « uela Azevedo (Portugal)
and Carl O'Brien (

identify . Report of the Workshop on the Development tock 11 ¢ .
a) iden y op of Assessments based on LIFE history traits Ocxs without quatiti-

tative forec and Exploitation Characteristics (WKLIFE) 21 characteristics;

b ) identify muy n based on available
limited infc 13-17 February 2012 tf-l.);

c ) apply the al Lisbon, Portugal 1 of the report for the
full list of this can be used and

stocks for v

d ) identify the e 1 in order to imple-
ment the ag

e ) identify opt stocks where there is
sufficient ir ICES i, —andb).

C I E M Conseil International pour
'Exploration de la Mer

ICES™ WKLIFE
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o WKLIFE attempted to categorise the amount and
quality of information available for each stock which
guided ICES in the process of identification of
appropriate assessment methods/approaches in the
advice for 2012.

ICES CM 2012/ACOM: 36

f
<= Cefas
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e Categorisation of stocks into one of seven basis

types:

1) Data rich stocks (quantitative assessments)

2) Negligible landings stocks

3) Stocks with analytical assessments that are treated
qualitatively

4) Stocks for which survey indices (or unbiased CPUE) indicate
trends

5) Stocks for which reliable catch data are available for short
time-series

6) Truly data-poor stocks (landings only)

7)

ICES CM 2012/ACOM: 36

Stocks caught in minor amounts as by-catch

f
<= Cefas
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ICES has used the following categorizations:

Category 1 — data-rich stocks (quantitative assessments)
These are the stocks that are not considered data-limited and this category includes stocks with full analytical
assessments and forecasts as well as stocks with quantitative assessments based on production models.

Category 2 — stocks with analytical assessments and forecasts that are only treated qualitatively
This category includes stocks with quantitative assessments and forecasts which for a variety of reasons are merely
mdicative of trends in fishing mortality. recruitment, and biomass.

Category 3 — stocks for which survey-based assessments indicate trends

This category includes stocks for which survey indices (or other indicators of stock size such as reliable fishery-
dependant indices: e.g. Ipue. cpue. and mean length in the catch) are available that provide reliable mdications of trends
i stock metrics such as mortality, recruitment, and biomass.

Category 4 — stocks for which reliable catch data are available
This category includes stocks for which a time-series of catch can be used to approximate MSY.

Category 5 — data-poor stocks
This category includes stocks for which only landings data are available.

Category 6 — negligible landings stocks and stocks caught in minor amounts as bycatch

This category includes stocks where landings are negligible in comparison to discards. It also includes stocks that are
part of stock complexes and are primarily caught as bycatch species in other targeted fisheries. The development of
mdicators may be most appropriate for such stocks.

RGLIFE & WKLIFE




ICES the information requirement of each category/method (denoted by x) and optional
CIEM information requirements (denoted by (x)):

Information Required

Category Population Survey Fishing Biomass Discards Landings
estimate mortality
1 X X X X x! X
2 trends (x) trends trends (x) X
3 trends relative relative x!2 x?
4 x? X
5 (x) X
6 (x)

1 Either available, or can assume to be zero.
2 If the landings or catches are unreliable, a directional advice (qualitative) can be giv-
en.

Information requirements r.
. <= Cefas
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For each of these categories. methods have been employed to provide quantitative advice. These methods are generally
based on approaches published in the scientific literature and most of the specific. quantitative forecast methods which
have been applied have also been subjecedt to formal testing in simulations. The methods and the associated
sumulations are presented i ICES (2012b). ICES recognizes that there are alternative approaches to many of the
methods proposed and it has in some cases been possible for the experts involved to provide methods which are more
adequate for a specific stock while maintaining the same principle of precaution as the general framework.

ICES” advice in 2012

f
<= Cefas
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Quantitative
assessment &
forecast available

> D

Assessment and
forecast used for
ICES MSY advice

Commercial or
non-commercial
data or proxies

available

. '

Survey-based
assessments Only catch data
I/Eee Data Ric;\\l '"d'frﬂésdsgmk available
\\{_Cat 1) method_s./J v
/51:9 Trends Only
“Cat 2} methods
— ¥

Iée SUWE}"—BQSE
\ methods (Cat 3)

Gee Catch Only

methods (Cat 4)

v
(See Data Poar
Bycatch methods

\_ (Cats 5 & 6)

ICES CM 2012/ACOM: 68

B
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Trends Only

-._\ {Cat2)meﬂ1od5j
f

FProvide a forecast

Derive reference points

Biomass estimate =

MSY Barigger

Biomass estimate =
MSY Bingger

Biomass estimate =
extremely low

See method 2.1.

1‘\\'
_/

r/_

| See method 2.1.2 |

S _/

'/See method 2.1 3\\'
N _

Baranov Catch
Equation

ICES MSY Control
Rule

Precautionary
Approach

l

|

Apply Uncertainty Cap to

+1

Apply Uncertainty Cap to

+1

Data-limited: category 2

<=Cefas
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Survey-Based \
methods (Ca(_a]/

T

abundance data
are available

Reliable

l

Life history
parameters, or
proxies can be set

{

Fishing mortality
(quatified or expert
judgement)

k.

k.

¥

4

y

Fzzto Foq known

Index =
MSY Bracesn
&

Fso > Fo

Index =
MSY Brauscen
&

Fsa < Fos

Index =
MSY Brauccen
&

Fea ?F

Extremely low
biomass

Index available &
no proxies for
MSY Brajcoen & F

Biomass estimate
increasing or
stable

L4

_ I S — _ _
gee method 3.1} l(gee methed 3 1D gee method 3.1;\ See method 3.1}| Gee method 3.1}1 (gee method 3.

h -

h 4

v

% See method 3.3}

Data-limited: category

Survey Survey
Known F FMSY in Adjusted ICES MSY Precautionary Adjusted E
Ratio 2015 Status Quo Control Rule Approach Status Quo e
Catch Catch
Apply Uncertainty Apply Uncertainty Apply Uncertainty Apply Uncertainty Apply Uncertainty Apply Uncertainty
Cap to Cy+1 Cap to Cy+1 Cap to Cy+1 Cap to Cy+1 Cap to Cy+1 Cap to Cyes
Apply Apply Apply
Precautionary Pi ary Precauticnary
Buffer to Cy+1 Buffer to Cy+1 Bufferto C,.,
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i

Biomass level

Reasonable

Low
Cateh or landings Habitat
! dependent,
data available f )
sedentary Species
¥ v
Approxmaton of Habitat area
war/M an known
possible
L]
Density, size,
discard rate
borrowed from
appropriate area
Apply DCAC
e e Use catoh curves
Teotbos) to approximate F
Recent catch > Recent catoh < Extremely low
DCAC DCAC biomass
(seemethod 4.1.1) (Seemethod4.1.2) (See method4.13 See method 4.1h See method 4.2.0
DCAC Faster DCAC Slower R Dats Precautionary
step increase step increase Borrowing Approach
Apply Uncertainty | | Apply Uncentainty | | Apply Uncertainty
Cap to Gyt Capto Gyt Cap o Cpms
Apply Apply
Precautionary Precautionary
Buffer to Cyoy Buffer to C,.y

Data-limited: category 4
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 Data Poor &
Bycatch methods |
Cas586) /

Compile all
available
information

¥

Limited landings
data available

}

Mo indication of F
relative to proxies

Short-lived
. Biomass &
No positive trengs | | Biomass thought recruitment
in stock indicators to be extremely i
low estimates
unknown
B - l - l’ - ~
éee method 5.1.0 /Sfee method 5% 6&3 method S.BE éee method 5 D
&6.1.0 &6.20 &4B30 -
PSA Risk _ Precautionary i
Assessment Gyt =G Approach o acice
Apply
Precautionary
Buffer to Cyeq

Data-limited: categori
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Ecorecion
Bay of Biscay Celtic Sea &
& Iberian West Coast of Widely
Baltic Sea Waters Ireland North Sea  Distributed
DLS CATEGORY D=7 n=24 n=36 n=27 n=39 ToTAL
21,3 2 1 1 4
3,10 1 1 2
312 1 1
314 3 1 2 3]
3,20 6 7 14 6 11 44
3,30 4 4
41,2 1 1
41,3 2 2
414 1 5 6
52,0 12 ) 9 8 35
53,0 1 1 5 7
6,2,0 1 ) 1 4 12
6,3,0 3 2 4 9

ICES” advice in 2012




Q I Method 3.2. If there are survey data on abundance (e.g. cpue over time), but
C there is no survey-based proxy for MSY Birigger and F values or proxies are not
known

1) Determine catch advice from the survey adjusted status quo catch:
7—1

Cya1 = Gg —x—
’ ! X 1[“/(2_;»;]

i=y—=z

2 ) Where [ is the survey index, x is the number ot years in the survey average,
and z > x. For example, x = 2 would be a two year survey average, and x =
z = 5, which is analogous to the five steps in the ICES MSY transition

from 2010 to 2015 (ICES Introduction 1.2);

3) Cyashould be the last three years unless there are justitied reasons for us-
ing a longer or ditferent time period. For example, long-lived species such
as sharks and rays used ten years of data;

4) Apply the 20% Uncertainty Cap to the catch advice (see above Methods;-
Detinition of common terms and methods);

5)

Then apply the Precautionary Buffer to the catch advice (see above Meth-

ods; Definition of common terms and methods).

Most common method
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Quantitative
assessment &
forecast available

>

Assessment and
forecast used for
ICES MSY advice

Commercial or
non-commercial
data or proxies

available

¢ :

. '

?

Survey-based
assessments Only catch data
539 Data RIC‘-\\ indicate stock available

trends

\\Eat 1) methot_j /,
/5?39 Trends 0n®

“Cat 2} methods

Iée SUWE}"—BQSE
\ methods (Cat 3)

Gee Gatch Only
methods (Cat 4

( ,}/} ) 4
ee Data Poor
Bycatch methods

\_ (Cats 5 & 6)

Simulation testing within MSE

framework
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Catch curve analysis
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e Hierarchy of data categories

e Reference points defined in relation to data
availability

e Increasing precaution with increasing uncertainty

e Management Strategy Evaluations recognised

Summary
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e Risk of over-fishing is not consistent across all stocks:

— A few stocks drive the main behaviour of fisheries
— Stocks less vulnerable or less exposed not at risk
— Strategic definition of ‘key’ stocks

— Simplified monitoring of ‘secondary’ stocks

— Develop robust rules harvest control rules

Summary
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e Ensure compliance with data collection requirements

o Strategically cost-effective assessment framework
— Strategic stock ‘ranking’
— Definition of assessment-management procedures
— Evaluate practical implications of procedures
— Defined risk thresholds for management

e Ensure objectives are consistent with resources

Summary
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e Further progress, and complete, the
developments for data-limited stocks so as to
include as many stocks as practicable within
ICES’ science and advisory framework.

e Identify preferred options for determining
proxies for Fyey for stocks without quantitative
forecasts, using life-history traits and
exploitation characteristics.

On-going activities




ICES

WEKLIFE lll-Workshop on the Development of Quantitative Assessment Method-
CIEM ologies based on Life-history traits, exploitation characteristics, and other key
parameters for data-limited stocks

The Workshop on the Development of Quantitative Assessment Methodologies
based on Life-history traits, exploitation characteristics, and other relevant parame-
ters for data-limited stocks (WKLIFE III), chaired by Carl O’'Brien (UK) and Manuela
Azevedo (Portugal) and will meet at ICES HQ, 28 October to 1 November 2013 to;

a) Build on the findings of past ICES groups, including WEKLIFE, RGLIFE,
WEFRAME, and the Data-Limited Stocks Methods document as well as
other published sources to: Identify preferred options for determining
proxies for Fusy for stocks without quantitative forecasts, using life-history
traits and exploitation characteristics;

b ) Identify kev methods for estimating current exploitation based on awvail-
able limited information (for instance catch and survey data);

¢ ) Investigate/define the methods to determine the relationship between life-
history traits and the variance of stock development indices;

d ) Identify the synergies in {a), (b) and (c) to make further advances in the
development of quantitative methodologies for data-limited stocks;

e ) Rewview the simulation work identified at WEKLIFE II and make recom-
mendations on current and future method choices for data-limited stocks;

f) Investigate the application of FSA to inform the advice for sustainable
fisheries for data-limited and data-rich stocks. It should speak directly to
the application (and magnitude) of the precautionarv buffer for data-
limited species. The susceptibility parameter(s), weightings (note-see
MNMFS), vulnerability, scaling, etc. should be designed for PSA criteria
relevant to start the process, formalize/quantify each by ecoregion and
then drill down to finer scales as required. To do this, ICES can build on
the work of WKDDRACS (meeting in mid-January 2013), which will iden-
tify the data needed to improve the assessments of Northeast Atlantic
stocks (NWWWEREAC, SWWERAC, and NSRAC).

g ) Based on this work, make a proposal for reopening the DLS advice in the
future.

ICES™ WKLIFE III
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ICES WGMG meeting 2013:
Reykjavik, 30 Sep — 4 Oct

TOR 2a
With regard to the ICES Data Limited Stock (DLS)

approach:
Investigate the robustness of the DLS approach

as a framework for providing advice.

ICES" WGMG 2013




4.11 - Implementing
the
Risk-Catch-Cost Framework
for
Data Poor Fisheries

ckn dgements
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Stock Assessment - per Stock

Biology
Aging

Tagging
Size of Maturity
Stock Structure

Monitoring

Catch & Effort
Biomass Surveys

Biomass Modeling

Total Cost / stock

3 yrs
3 yrs
3 yrs
3 yrs

10-20 yrs
10-20 yrs

3yrs

$500 —

S90k
$150k
S30k
$100k

$300k
$1,000k

S150k

1,000k



Layers of Assessment Data Requirements

Quantltatlve Stock Assessment Catch Rate or Survey Time Series
Biomass Modeling Data with:

SPR@ Size Curve curve estimated
& High Quality Size & Other Data

Risk Based Framework Expert Based

Risk Management

Quantitatively estimated
BMSY, B, SPR,,; targets

» Popt.’

& risk

High Risk Ranking
Requires higher
assessment



Layers of Assessment

Quantitative Stock Assessment
Biomass Modeling

Risk Based Framework

Data Requirements

Catch Rate or Survey Time Series
Data with:

SPR@ Size Curve curve estimated
& High Quality Size & Other Data

Expert Based

Graduated Progression
Increasing Costs & Increasing Precision

Risk Management

Quantitatively estimated
BMSY, B_. ., SPR_ . targets
& risk

opt.” opt.

High Risk Ranking
Requires higher
assessment



Layers of Assessment Data Requirements Risk Management

Quantltatlve_ Stock Assessment Catch Rate or Survey Time Series Quantitatively estimated
Biomass Modeling Datawith: BMSY, B. ., SPR__. targets

» Popt.’

& risk

opt.
SPR@ Size Curve curve estimated

& High Quality Size & Other Data

Graduated Progression
Increasing Costs & Increasing Precision

Risk Based Framework Expert Based High Risk Ranking
Requires higher

assessment

The Risk — Catch — Cost Framework
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Indonesian Blue Swimmer Crab Spanish Razor Clam
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February 2013
Port Fairy, Victoria

Port Fairy blacklip

Distribution of estimated SPR
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February 2013
Port Fairy, Victoria

Proportions of By-catch Species in size classes

SPR = 100%

Small Large

Proportion
04 0.6 0.8 1.0

0.2

0.0

SPR =50 % SPR=30%
@ _
-
Ei)u | I I E; | I
al:c . EN7
. | . [
Small Large Small Large

—— Small
—  Medium
— Large
[ I I |
04 0.6 0.8 1.0

SPR




Layers of Assessment Data Requirements Risk Management

Quantitative Stock Assessment

. _ Catch Rate or Survey Time Series Quantitatively estimated
Biomass Modeling Data with: BMSY, B, SPR, targets
SPR@ Size Curve curve estimated & risk

& High Quality Size & Other Data

SPR @ Size Analysis —Triage Generic SPR@ Size Curve &

Graduated Progression
Increasing Costs & Increasing Precision

Equilibrium Assessment Categoric analysis of rudimentary <SPR;4y, Requires higher
size data assessment
>SPR,45, NoO action
Required
Risk Based Framework Expert Based High Risk Ranking
Requires higher

assessment

The Risk — Catch — Cost Framework



MSC Meeting, Fremantle, WA
11-14 September 2012

Harvest Control Rule

Recommend Biological Catch (RBC)

1.0

NewRBC = pastRBC * (1+V)
V=k1A4A+KkZ2BF
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k1 & kZresponsiveness parameters 1' 2 3 4 5
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MSC Meeting, Fremantle, WA
11-14 September 2012

lterative Catch Adjustments
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Layers of Assessment Data Requirements Risk Management

Quantitative Stock Assessment

Generic SPR @ Curve assumes worst-
case productivity for species

SPR @ Size Analysis —Triage Generic SPR@ Size Curve &

_ _ Catch Rate or Survey Time Series - Quantitatively estimated
Biomass MOdE“ng Data with: .9 BMSY, Bopt,l SPRopt, targets
SPR@ Size Curve curve estimated 8 & risk
& High Quality Size & Other Data v
cC O
O w
a C
S8
Y]
O G
SPR @ Size Analysis — advanced sprR@ Size Curve curve estimated &= <
Equilibrium Assessment & High Quality Size Data o 055) e s st
© + :
L . 2 . ; adjustment around SPR.,
SPR @ Size Analysis- basic Generic SPR@ Size Curve & = é Sizje Target 0%
Equilibrium Assessment Better Quality Size Data D s '
&=
‘@
©
2 S,
Equilibrium Assessment Categoric analysis of rudimentary O <SPR;q Requires higher
size data = assessment
>SPR,45, NoO action
Required
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The Risk — Catch — Cost Framework



Scale-less Assessment
Local Spawning Potential Ratio

Frequency

Recruits

Swordfish -
CPUE of Prime fish
Cld Fish =150kg (d?essggq\?\rtlls
pome ™" S0 S RBC(t+1) = RBC(t) X (1+k X slope to target)
. . w1 S
Size (weight or length) ] T—
Stable Falling
CPUEprime 1 _ _ [ [
CPUEOIdQ ) Alf CPUE Old Blsha @ad Prop'n Old Fish above SF‘R40 C.IF CPUE OId Fish below and Prop' Old Fish above SF‘R40
3 Old Fishabowe and Prap'n Old Fish below SF‘R40 D. If CPUE Old Fish below and Prop'n Old Fish below SF‘R40
Pr op OI d A. Stock Increasing or Effort Creep|  A. All Stable or lightly fished (?) A. Failing Recruitment
Has Recruitment been high? No Change 2% Reduce RBC
o H Yes - No Change
CPUEre¥ruits No - Reduce RBC B. SPR Declining Effort Creep B. Not Possible
B. SPR Declining Effort Creep Are Recruits Declining?

PRy Yes - Zx Reduce RBC
digr-3ioT aei
ancisrSwTRITCIsaeing No - Reduce REC

Has Recruitment been high

Size ba Sed C P U E I n d icato rs ;:ﬂ: R:L:;:;%Gc C. I:teatt:;uitment decline or transition | C. Failing Recruitment

2x Reduce RBC
P Are Recruits Declining?
C. Not Possible Yes . Reduce RBC
No - No Change

Ta rget Level Of S P R D. SPR decreasing Effort Creep D. SPR Declining Effort Creep D. General Stock decline
or Recruitment Increasing andior Recruitment declining 3 % Reduce RBC
Is Recruitment high? Are Recruits Declining?
Yes - No Change Yes - 2z Reduce RBC
No - Reduce RBC No - Reduce RBC

Iteratively establish local catch levels

Froese, R. (2004). Keep it simple: three indicators to deal with overfishing. Fish Fish. 5, 86-89.

Prince, J. D. et al. (2011). A simple cost-effective and scale-less empirical approach to harvest strategies. ICES
J. Mar. Sci. 68: 947-960.



Layers of Assessment Data Requirements Risk Management

Quantitative Stock Assessment

Generic SPR @ Curve assumes worst-
case productivity for species

SPR @ Size Analysis —Triage Generic SPR@ Size Curve &
Equilibrium Assessment Categoric analysis of rudimentary
size data

<SPR;q Requires higher
assessment

>SPR,45, NoO action
Required

_ v Catch Rate or Survey Time Series - Quantitatively estimated
Bl el Data with: o BMSY, B,., SPR,,. targets
SPR@ Size Curve curve estimated 8 & risk
& High Quality Size & Other Data &J
c
SPR @ Size Decision Tree Catch Rate Data with: O w Ll Rl
Dynamic Pool Assessment SPR@ Size Curve curve estimated g) adjustment around SPR;,,
& High Quality Size Data %"0 o Size & CPUE Targets
: . e b Dynamic assessment more accurate,
SPR @ Size Analysis —advanced sprR@ Size Curve curve estimated o= £ less precautionary more catch
Equilibrium Assessment & High Quality Size Data o 055) eI
© + -
L . A _ , S v adjustment around SPR,,
SPR @ Size Analysis- basic Generic SPR@ Size Curve & S S e e
Equilibrium Assessment Better Quality Size Data D s
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‘n
©
)
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=

Risk Based Framework Expert Based High Risk Ranking
Requires higher
assessment

The Risk — Catch — Cost Framework






Recommendations for estimating total
mortality rate from cohort sliced catch
at length data
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Presentation outline

* Cohort Slicing
— Effect on catch at age
—Need for a plus group
—Implications for catch-curve analysis

* Simulation Design
—Method for evaluating performance

e Results & Conclusions



Data poor assqssment

* We Have
—Length

* We Want
—Age
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Restrepo (1995)
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Log(catch)

Kell and Kell (2011)

Original CAA
Cohort Sliced CAA

1 3 5 7 9 11 15 19 23 27 31 35

Age

39




Study Questions

 What are the accuracy & precision of total
mortality rate estimators?

* What conditions produce large errors?

* Do any methods perform better in general?



Simulation

e Monte Carlo simulation
—7=0.3,0.60r1.0V

Catch

400
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. — Z=03
\ — Z=06
'\'\ —e—  Z=10
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Log(Catch)

Simulation

e Monte Carlo simulation

—Recruitment error=0.3,0.70r 1.1 *

0.3 0.7 1.1
e
) \—-\ ) N )
0 ~, L YN

* Myers et al. 1995



Simulation
e Monte Carlo simulation

— Swordfish growth model *

L, =238 cm
t =-1.404
K=0.185

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* Tserpes & Tsimenides (1995) Original age



Length (cm)

Simulation

e Monte Carlo simulation

—Length at ageerror=4,80r12 %L *

e—0o—"
. - —

» ¢

o

[ e

8%

.. | 250
(e] P
Q7 200 -
o 150 -
E_
100 1
o 4(y
2 0)
50 -
1 3 5 7 9 1113 15 7

* Amy Then personal communication
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Simulation

 Generate 1000 populations

 Chapman & Robson (Right Censored) #
— Peak plus *

* Weighted regression (w;)
— Peak *

e Regression (Not Shown)

* Plusgroups5,7,9,11,13 & 15

t Robson and Chapman (1961)
* Smith et al. (2012)
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Comparative Results

* Compare CR and WR

@ - Chapman Robson
- Weighted Regression

Only showing low recruitment error (0.3)
scenarios
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Conclusions

* Cohort slicing shifts catch to older age groups

* For Catch curve analysis

1. CR method, with young plus group, preferred

2. If Zand length-at-age error are high, estimate may

have significant negative bias (20 — 40%)
3. Otherwise, bias low < 10%
e Given Z from cohort slicing, = check bias by simulation

e Best plus group depends on method. (For VPA?)
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Random walk models for estimating abundance
from a series of resource surveys

Paul Spencer, Grant Thompson, Jim Ianelli
and Jon Heifetz

National Marine Fisheries Service
Alaska Fisheries Science Center
Seattle, WA



Biomass (kt)

A signal to noise problem

1) We want to remove the observation error
2) We do not want to “smooth" the underlying “signal”
3) The last data point is most important (for management)

500

400 -

300

100 - )

True Survey Biomass
——  Observed Survey Biomass

| | | | |
0 10 20 30 40 50

Year



State-space representation
z = Population size (unobserved)
Zt =1 (Zt—l) T a‘( Y = Survey index

yt — g (Zt) + et Process and observation errors are
represented by aand e, respectively

One example of special interest is the random walk model with
uncorrelated noise (RWPUN ; Stockhausen and Fogarty (2007))

Ly =145t
Yi = £, t €



Exponential smoothing

2. =9, =()y, + (1—a)[ayt_1 +al-a)y, , +all—a)’y, . +.. .]

This is a Kalman Filter
with constant
observation error
variance

For the random walk model with constant variances:

1) o = f(process variance/observation variance) (Pennington 1986,

Thompson)
2) Exponential smoothing is the optimal forecast method
(Pennington 1986) 12

1
0.8
0.6

0.4

Smoothing Parameter

0.2

0
0 0.5 1 15 2 25 3

Observation Variance/Process Variance



Random effects model

Considers the process errors as "random effects” (i.e., drawn from a
overlying distribution) and integrated out of the likelihood.

The state-space random walk plus noise can be formulated as a random
effects model.

Differences between the Kalman Filter and Random
Effects models

1) Exact solution (KF) vs fine numerical approximation (RE)

2) Different statistical approaches -Bayesian updating equations vs
hierarchical random effects model

3) The random effects model can provide more flexibility with non-linear
processes and non-normal error structures



ARIMA modeling notation

ARIMA models (auto-regressive integrated moving average)

Yo =Ygty , T & +,315t_q ...,qut_q

o -- p auto-regressive parameters
B -- @ moving average parameters
& -- random errors

The data can also be differenced dtimes to achieve stationarity.
The structure of the ARIMA model is referred to (p,d,q).

The random walk plus uncorrelated noise (RWPUN) model is a (0,1,1)
ARIMA model.



Models where we do not assume the underlying state is a
random walk

Stockhausen and Fogarty (2007) applied a smoothing procedure based on
generalized ARIMA models:

1) Fit a series of candidate ARIMA models to survey data.

2) Use model selection criteria to identify the best p,d,g ARIMA model.

3) Estimate the power spectrum for the ARIMA process, which gives an
estimate of the upper bound of the observation variance (K™).

4) From ARIMA parameters and K*, estimate smoothing weights to be
used in a symmetric moving average.

Important point - the Q dimension we estimate for the observed data
must be equal or greater than (P + D).



Example estimation of power spectrum and K*

2.0 1
= 1.5 -
o
=
Q
L
= .
‘f 10 Estimated upper bound to
] ) . .
= observation error variance
o
~

0.0 1

Frequency



Conditions for applying generalized ARIMA
smoothing

1) A time series long enough to get reliable parameter estimates
(Stockhausen and Fogarty suggest 40 years)

2) Estimated @ >= (P+D)
3) Not white noise

4) Other (stationarity of autoregressive parameters, invertability,
variance reduction)



Description of Simulation Study

Objective: How does generalized ARIMA modeling compare to
exponential smoothing and random effects model?

Two life-history types: |Pacific ocean perch (long-lived) and walleye
pollock (shorter-lived)

Recent population: Increasing
Flat
Decreasing
Process errors - two levels of recruitment variance (sigma_r)

Observation errors - two levels for CVs of survey biomass estimates

Three levels of survey frequency



Classification of ARIMA model results

400 1 .
POP — Increasing Trend
300 1
200 1
100 1
_ — B
0 ARIMA(O0,1,1) Other White noise Q<=(P+D) Other
400 1
POP — Flat Trend
300 1
200 1
5 -
. [ ]
0 ARIMA(0,1,1) Other White noise Q<=(P+D) Other
400 1 .
POP — Decreasing Trend
300 1

200 1
" ]
0- I [

ARIMA(0,1,1) Other White noise Q<=(P+D) Other




Bias and variance of relative errors of recent

smoothed biomass estimate

0.3 1

0.2 1

Decreasing

Flat

Decreasing

Flat

Gen ARIMA -

Exp Smooth

Rand Eff -

Gen ARIMA -

Exp Smooth

Rand EfT

Gen ARIMA A

Exp Smooth -

Rand Eff +

Best ARIMA model is (0,1,1)

Generalized ARIMA model
performs about as well as
exponential smoothing and random
effects models

Best ARIMA model is not (0,1,1)

Generalized ARIMA modeling
reduces mean bias, but can increase
variance relative to other methods



Conclusions

1) The Random Walk model described many of
our datasets. For these cases, the three
smoothing methods perform similarly.

2) Some cases may hot be conducive to
generalized ARIMA smoothing.

3) If the best ARIMA model is not ARIMA (0,1,1)
model, then generalized ARIMA smoothing
could reduce the bias but may increase the
variance of the estimated error.






Example of symmetric smoothing weights
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Biomass (t)
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Classification of linear models for survey time series
(considered by Alaska Fisheries Science Center)

Estimation of state dynamics?

yes

no

Random Effects model
Kalman Filter

2
Generalized ARIMA Exponential
modeling weighting/Kalman
9 filter/ARIMA (0,1,1)
>~

Assumed constant observation errors?




A random walk Kalman filter

1) Measurement error can differ over time
2) Observations may not be evenly spaced

_ 2
Xt = Xt—l T4 s~ N(0,07%) State equation

— 2 . .
Y, = X, +¢& g ~ N(O,SE/) Observation equation
B Observed =#—Lognormal Normal
B.0E+04 Example application to AT skates
7.0E+04
6.0E+04 [ 1
o 5.0E+04 " £.
g 4.0E+04 T/m
D 3 0r+04 lJLH %f T
2.0E+04 l I il
1.0E+04 :‘,@"TH —1
0.0E+00 T ‘ ‘

1975 1980 1985 1990 1995 2000 2005 2010 2015



EBS skates

Biomass (t)

7.0E+05

6.0E+05
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How variable are the subarea biomass estimates?

3.0 1
5
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§ ®  dusky grp * G O A
7 2.0 1 ®  Pacific ocean perch °
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£ 154 a REsBs
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Subarea variability for some GOA
"other rockfish” species

W
wn o
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of point estimates
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redbanded rockfish

redstripe rockfish
silvergray rockfish
sharpchin rockfish
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Integrating marine reserves into

data-poor stock assessments:

Assessing tradeoffs between models that rely
on reserve-based indices




Stock assessments rely on contrasts
in historical data

Current Historical

D ARG PR OB R N N e e =

| p1296:5130 2965923 .




Using reserves as reference areas

Outside Reserve Inside Reserve




Questions

* What are the trade-offs between methods
that rely on different information streams?

* Do improvements to management offset
monitoring costs!?

* What data collection protocols and
assessment methods might work best for
California’s nearshore stocks?



California Collaborative Fisheries
Research Project

 Since 2007, 4 marine
reserves monitored in

central CA

* What can this tell us
about the status of
fisheries?

Point Lobos SMRE

* Incorporating marine
reserves into ﬁSheries 7 Piedras Blancas SMR\\

MPAs Surveyed

management 0 10 20 Nautical Miles




Management Strategy Evaluation

OPERATING MODEL

Dynamics of Data Collection
fish stock and Protocol
fleet

Assessment
Regulations Model

MANAGEMENT STRATEGY




Operating Model

» Age-based, spatial, stochastic
operating model to simulate
harvest of nearshore species

I * MPA created in 20% of available
' habitat




Simulating CCFRP’s Data Collection

Protocol

Generate samples from inside and outside
marine reserves

» Size composition

* Catch-per-unit-effort

Non-Reserve Reserve

Outside MPA

4
-
127 B :
o e .
g 10 9 _— ~ N= 2450 ] .
o 8 | il - )
6 { . .
4 ‘ ‘ . b » »
2 { — ’
0 ]_l rl—r‘}—v————.
300 350 400 450 500 '
1 »
o
»

Total Length (mm)




Different Assessment Methods
Require Different Data

No Monitoring

CPUE Only

Size Only

Size and CPUE

50% of historical
catch

Density Ratio
Control Rule

Length-Based SPR,
Bounded
Mortality
Estimator

Decision Tree




Comparing Apples to
Apples

Optimization procedure

e Determine the minimum
amount data required to
stabilize variance

« Optimize the control rule
parameters for every
scenario run




Scenarios

Test how well each management strategy
performs under a range of scenarios

* Historical fishing pressure
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s it worth it to survey
reserves!

« Some stocks could see
performance gains that
offset costs

 Benefits to recreational
fisheries less clear

» Multi-species sampling
program is most cost
effective




How well do these
methods work!?

rrrrrr

Some estimation
methods may be ‘
consistently biased TR

ol 4
02 4 * 4+ A o
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In measuring
performance of data-
poor methods, long
term performance
matters
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Harvest Control Rules

e Successful indicators
must be able to detect
change

Spawning Stock Biomass vs. Time

» Harvest control rule
determines how you
respond to changes

* Important to simulate
entire management
procedure
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CERTIFIED SUSTAINABLE SEAFOOD

Marine Stewardship Council

Assessing the
Assessment Methods

Megan Atcheson, Cassie Leisk, Nicolas
Gutierrez, Dan Hoggarth, David Agnhew

WCSAM July 2013




Marine Stewardship Council (MSC)

* Independent non-profit
* Meets FAQO guidelines for ecolabels
« Scope — wild capture fisheries

* Objective and scientifically verifiable
standard

* Third-party independent, accredited
certifiers

* Voluntary

* Open to fisheries of all sizes, scales,
geography, & gear

* Fish from successfully certified
fisheries can be marketed with MSC
ecolabel once “chain of custody” is
completed




The MSC Standard

Sustainability
of the stock

Effective
management

Ecosystem
impact




Default Assessment Tree: Principle 1

Marine Stewardship Council
Default Assessment Tree Structure

MSC Principles & Criteria
for Sustainable Fishing

(MSC Standard)
Principle 1 Principle 2

Harvest Strategy

Outcome (Management)

PI 1.1.1: Stock Status

Pl 1.2.1: Harvest Strategy

Pl 1.2.2: Harvest Control Rules & Tools

P11.1.2: Reference Points

—PI 1.1.3: Stock Rebuilding PI 1.2.3: lofacaatiaadanitoring
Principle 1 considers the sustainability and

management of the target stock (as identified
within the unit of certification).




CB2.8 Assessment of Stock Status Pl (P11.2.4)®m
Table CB7: PI1.2.4 Assessment of stock status PISGs

Component Scoring issues

Harvest Assessment a. The The assessment
strategy of stock Appropriateness assessmentis | takes into
status of assessment appropriate for | account the
to stock under the stock and major features
1.2.4 consideration for the harvest | relevant to the
control rule. biology of the

What If there IS no

stock
assessment?

assessment assessment
has been tested
and shown to
be robust.
Alternative
hypotheses and
assessment
approaches
have been
rigorously
explored.

e. Peer review The The assessment
of assessment assessment of | has been

stock status is | internally and
subject to peer | externally peer
review. reviewed.




Risk-Based Framework (RBF)

What is the RBF?

 Set of assessment methods

* |nsufficient data for standard
assessment tree

« Highly precautionary risk-based
approach

« Based on Ecological risk assessment
for the effects of fishing (ERAEF,
Hobday et al. 2007, 2011).

Why was the RBF developed?

« Accessibility

“...the use of less elaborate methods for
assessment of stocks should not preclude
fisheries from possible certification for

eCO|ab8”ing”. (FAO Guidelines on Ecolabelling for Fisheries
and Fisheries Products from Marine Capture Fisheries)




Data Gaps

1. Assessments in which there is no stock assessment
data.

2. Assessments in which stock status data is available
but target and limit reference points have not been
defined.

3. Assessments for which stock assessment information
IS available and reference points may be defined but
there are concerns about the quality and/or currency of
the data.

4. 20 fisheries in total have used the RBF for P1 — less
than half are from developing countries or small scale
(but 50% of these are bivalves).




Hierarchical approach

A
High Level 3. Data used to
score default tree, e.g.
E‘ Stock assessment
(D)
=
L
= Level 2. PSA
O
o
E Level 1. SICA
®
()]
No data
Low

v

Easy Hard

Ease of demonstrating “pass” for PI

The RBF extends the range of tools available to an assessment team




Scale Intensity Consequence Analysis j

Qualitative information
« Diverse range of stakeholders

Evaluation of risk

« Scale (temporal and spatial) and
Intensity of fishery’s activities on the
target stock

« Consequence of activity for the
species

If risk levels unknown:
« Highest plausible risk score results
« Highly precautionary




Productivity Susceptibility Analysis (PSA)

Semi-quantitative information
« Diverse range of stakeholders

Assumes risk to a species
depends on:
* Productivity of unit
« Susceptibility of unit to fishing activity
« Areal overlap
* Vertical overlap
« Selectivity
« Post-capture mortality




Is the RBF Really Precautionary?

Industrial fisheries that would be given GREEN under normal MSC get RED under PSA

AN

3
£ * o o SG100
3 r * &
2
= 2
§
£% ¢
5
£ s 0
-
: 1 Lk A o
) =
z \ W\ 80
: . :ws

\ N

- \ 1
z +*% ::k \

0 J

4000 600 BO.0 100.0

P54 score expressed as M5C equivalent

Equivalence
is effectively
shifted
down by 20
points
(normal 80
would only
score 60)

PSA scores expressed as MSC equivalent demonstrating the high levels of precautionary built into the
RBF. The PSA scores for all 59 fisheries resulted in more precautionary scores than those that would
have resulted using the standard assessment approach. Horizontal lines represent approximate MSC

scores that would be expected when using B/BMSY ratios in Pl 1.1.




Summary

. Data-rich assessment v

 Data-poor assessment v

« Data-semi-deficient assessment 7

* Fisheries Standard Review: improvements.msc.org

Marine Stewardship Council’'s

Looking for the MSC's main site

PROGRAM ® Go to msc.org @
IMPROVEMENTS
Tt h bi heryort = interested i h Search site Search(®)

L
\ | ng our po .if.y’a ) es:,ﬂ:;

s Standard Revisw (FSR)
Program improvements database About the process Get involved
Fisheries Standard Review Fanenes”

(FSR) Ne curent 1 upcaming consuttions
Summary
Background ® Bg\:(ra?on;rﬁéﬁ
Supporting documents ®
FSR Timeline ®
History ®

Email updates
Improvement overview
Sign up to receive a notification by email each




CERTIFIED SUSTAINABLE SEAFOOD

Questions?

Megan Atcheson

megan.atcheson@msc.org

WWW.MmSc.org
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Surplus Production Models and SRA
Based techniques for Kawakawa &
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Outline of Talk

Stock assessment Traditional approaches:
— Surplus production models
— Age Structured Models

ssues on catch increases in |10
Data poor Stock Reduction Analysis Methods

Kawakawa & Longtail Assessments
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Traditional Approach: Parameters estimated

e Catchability parameters from closed form
solution

 rand K.

 Data used, Catch, Standardized Index of
Abundance and Effort.



Data Quality and type of Information

e Catch Data from 1950’s.

e Standardized Index of Abundance data from
2004-2011 (Maldives).

e Assumed one stock for the entire Indian Ocean.



Results Kawakawa-Indian Ocean

Quarterly Standardized CPUE by Species
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Model 1 (low [Model 2 (Medium|Model 3 (High
Pars productivity) [productivity) productivity)
r 0.250 0.650 1.100
Kk 1,600 1,200 800
Likelihood 1.39 3.01 2.97
SMSY 800 600 400
Yield 100.0 195 220
ratioS 1.16 1.58 1.63
ratioF 1.26 0.42 0.31
Prob 19% 41% 40%

Indian Ocean KAW estimated Biomass trends
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r and K solutions for KAW
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Non_informative Priors

Parameters 5% 50% 90%
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Informative Priors

Parameters 5% 50% 90%
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Summary/Conclusions on Traditional
Approaches

CPUE data non-informative

Anchored FAD can be expected to cause hyper-
stability in CPUE indices .

Maldives CPUE series representing Indian Ocean.
Further research needed.
Age/length data organized by fishery.



Alternatives : Stock Reduction Analysis
and Data Poor Approaches

* Used Walters et. al. (2006) approach adapted
oy Martell and Froese for ICES stocks (2012).

* Key in this approach is assumptions about
depletion levels at various time periods in the
trajectory and then finding a set of r and K
values that fit these

Using that set of r and K values, we make
projections on the health of the stock.



SRA and Posterior Catch Based SRA
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r constrained by species resilience. K constrained 100 * max catch

Assumed depletion level in 2011(0.1-0.9 K)
r constrained by species resilience.

Find solution that meets threshold depletion level within
specified precision (1.e. r and K solutions) :Optimize
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Posterior-focused catch-based assessment

* Modification of the SRA Method presented.
* Method requires fewer priors.
* Using a prior range in r improves the outcome.

* Use optimisation instead of simulating
biomass trajectories.

* Perform management strategic evaluation by
forward simulation.



Focus on posterior

e Use unconstrained priors for Kand r, thatis O
<K<ooandO<r<oo,

e Use control rules to retain all viable iterations,
e.g.,
— B, >(,
— B, >0,
— B, <=K
_ |(Bend _ Btrue)/Btruel <a



Tvpical posterior r and K
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Catch
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Assuming depletion
level from 0.1 to 0.8,
and r between 1.06 and
2.04.

There is no feasible
solution when the
depletion is assumed to
be below 0.4.

The unit is thousand
tonnes (except for r).
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Kawakawa biomass trajectories from 100 simulations
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Kawakawa biomass projection
assuming catch maintains at 2011 level
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Kawakawa biomass projection
assuming catch = 100 thousand tonnes

400 - |
L P \';\_f\""-“'— |
- i
h"\v i
- \ |
300 o i
AN !
L™ 1
\ 1 ~
v
y oo 7
£ 200 - e !
o ]‘l
s} ¥
100 VLR LIIEE
A
I I I I
1960 1080 2000 2020

Year



Kawakawa results
- catch-based method

EHM
06 LSENEE:
O 143 129 135 143 151  1.58

MSY 126 113 120 128 132 136
Byo11 181 187 193 197 204
D,o;; 0.54 0.48 0.51 0.54 0.57 0.6
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Longtail biomass projection
assuming catch maintains at 2011 level
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Longtail biomass projection
assuming catch =100 thousand tonnes
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Longtail results - catch-based method

MM
381 338 357

r 1.16 1.03 1.08 1.15 123 1.3

MSY 109 94 102 110 118 124

B, 211 152 183 212 242 268

D,;; 055 044 051 056 0.6  0.64
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Overall Conclusions

Both KAW and LOT appear susceptible in recent years.

Total catch in recent year (2011) appears to exceed
MSY based on both the SRA and the Posterior based
SRA Methods.

Catch levels probably unsustainable at these levels.

Assessments would be improved if Iran and Indonesia
can develop CPUE indices for LOT and India can for
KAW.

Stock Structure (accounting for this in assessments).
Results comparable to simpler LH Based methods.
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Battle of the Methods:
Which Empirical Predictor

of Natural Mortality Rate
Works Best?

Amy Then, John M. Hoenig,
Norman Hall, Alex Hesp, David Hewitt

July 19, 2013 Data Poor Approaches |



D<:> Introduction

* Natural mortality M...influential parameter
* Difficult to estimate reliably by any means

e Data poor (& rich?) stocks: routinely use
empirical M methods

* Averaging multiple M estimates - good
practice

* Empirical M estimates —
all equally good/ independent?




Questions of Interest

M prediction Ranking
Improved
Updated
combo
‘Fair’

comparison



D<:> Issues

Issues

M — variable & complex
True M unknown

3. Available estimates of
varying quality

4. Non-random sample of
species from ill-defined
population

5. Multiple estimates for
some taxa

Useful to consider constant M
Predict what is known

Users judge quality of data

Test relationships on subsets

Hierarchical structure/



Df:> Fair comparison

. performance of original methods?
‘New’ dataset

: how do the methods compare to
each other?

‘Common’ dataset — good or bad

. performance of updated methods?
‘Full’ dataset
Update coefficients & evaluate



Df:> The ‘battle’

Empirical estimators Citations™
* Pauly (1980): 1866

* Hoenig (1983): 836

* Jensen (1996): 284

* Alverson & Carney (1975): PAVE

* 1-parametert_ . (M=c¢/t )

* based on Google Scholar; last updated on July 11, 2013



e Compile M estimates
e M methods*: catch curve, length-based,

Z vs f, tagging

*statistical catch-at-age estimates not included

* Find matching K, L., Temperature, t,,,,
no ‘borrowing’

 Evaluation: approach & updated
e Metrics of performance:



e ‘Common’: 201 unique species
e Mrange 0.014 - 7.92 yr

 Dataset will be posted online, maintained &
updated by a committee

e Contributions are welcome!




M & Predictors (log)
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Prediction error (RMSE)

Updated estimators

Equal n (= 201)

Updated ('Full’)
2

Error r Error n
1-parameter tmax 0.31 090 031 214
Hoenig 0.32 090 032 214
Jensen 0.59 046 061 205
Pauly 0.62 053 062 201
Alverson & Carney 1.17 0.85 120 202
Hoenig - Pauly Combo 0.86 030 201




Updated Hoenig
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Updated t,,...-based
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Updated Pauly

Pauly: Temperature Coefficient
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Independence?
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Hoenig - Pauly
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e Rank:
1-parametert, . =~ Hoenig
Jensen ~ Pauly
Alverson & Carney

e Updated Pauly (+Temp)
Updated Pauly (-Temp)

e Best:
(79% weight to My, .pie, 21% to Mpauy)
—> only slightly better than t__ -based



K> Conclusions &
Recommendations

e Updated preferred

e Use updated Jensen or Pauly (- Temp) when t_
not available

e Alverson & Carney not recommended

e Other variants (e.g. Hoenig geometric
regression, Pauly & Binohlan) not recommended

e Support for continual maintenance of ‘database’
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Thank you!

Polyodontidae Syngnathidae Malacanth idae

oooooooooo

Poeciliidae

Engraulidae
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