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A Generalized Assessment Model to
Obtain Consistent Management
Advice from Diverse Data

Richard D. Methot Jr.
Science Advisor for Stock Assessments

World Conference on Stock Assessment Methods
Boston, MA
July 17,2013



Stock Assessment Goals

 What harvest policy is sustainable and provides
balance between preventing overfishing and
attaining maximum fishing opportunities?

* Does current level of fishing (F) exceed that
policy?

 Has abundance (B) been so reduced by past
fishing as to put the stock and ecosystem at risk?

* What future catch would implement the policy?
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Assessment Data and Situations

DATA SITUATIONS

» Catch only * Short time series vs. long-

term series containing
« (Catch and stock abundance contrast

 (Catch, abundance and/or * High Fvs.lowF

composition « Stable biology vs.
. environ/eco driven changes
* Add ecosystem/ climate/ in process
habitat factors » Degree of stock fluctuations
(M + sigmaR)

 Degree of spatial viscosity

iy
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Assessment Approaches

» Catch Only -
» Time series, no biology Added Features:

« Biomass Dynamics Spatial
» Simple tuning factor Multi-species
+ Time series tuning  Covariates P

o STATISTICS: measurement vs. process error
Age and/or Size Structured

* Noisy data with gaps

* Full catch-at-age

o STATISTICS: Penalized pseudo-likelihood, Integration across
random effects, Kalman filter

Multi-Species with M and/or technological linkages

T,
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Biomass vs. Age Model Dichotomy

Age-Structured
Empirical Reconstruction;
Then Spawn-Recruit

v -

Fousy ives By, = Frsy 9ives B, near 0.3°K,
near 0.5°K or lower.

Biomass Dynamics
I, K parameters

» Use 3-parameter forms that align these approaches;
* Don’t ignore effects on SSB when using F, as F,;, proxy
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Desirable Model Characteristics

« Measures F, B, and productivity

« Estimates reference points and does forecasting

* Assimilates diverse types of data

* Consistency (no dichotomy as on previous slide)

« Statistically rigorous

* Biologically realistic

 Responsive to time-varying ecosystem/environmental
Processes

» Easy to use; includes A.l. to guide good usage practices
o Spatial
* Multi-species

iy
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How do Data Influence Assessment Results
in a Generalized Model — Stock Synthesis?

« Consider three data situation

1. Scalar observation at end of time series
* Mean length
 CurrentF
¢ Bcurrent/ BO

2. Time series of relative abundance

3. Composition data
 Perfectly precise ages
* Ages with ageing imprecision
* Lengths

o g
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Example Simulated Population
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Generate and Analyze Simulated Data Using
Stock Synthesis

—SpawnBio —Recruits

|

Catch

l

1950 1970 1990

2010

Fishery age, length, and imperfect

ages beginning in 1971

Survey of spawning biomass

beginning in 1981

Various scalar measures in 2010

@ NOAA FISHERIES

.....

Analyze each data scenario using
Stock Synthesis (SS)
Allow estimation of some or all of:
» Steepness
» Selectivity
« M
* Recruitment deviations
* Growth
Use informative priors in a penalized
likelihood framework
Focus on variance of model results

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9



Results with Simple Data
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Results with Composition and Survey Data
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Age Data and Survey; Est. Selec. Process Error

2.5 - No Process Error
+9 Parameters for Proc Error
Add M estimation
2.0 - Ignore all priors
S
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Simulation Summary

* Catch time series plus some simple indicator of F is
highly informative

* Three types of composition data ~ equally informative
* Truly random data
» Repeated observations of each cohort

* Adding process error in estimation did not greatly
degrade precision

A generalized model enables blending information from diverse
data and making comparisons such as this

* Lightly informative priors are important part of approach

* Real data must be much worse than random measurement error

Lo
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Other Simulation Studies

* Fidelity of M and h estimation in assessment
models (Lee, Piner, Maunder, Methot)

 Recruitment lognormal bias adjustment protocol to
obtain consistent results in Max Likelihood
estimation (Methot and Taylor)

» Effect of spatial structure on performance of
assessment models (various)

 Reports from the UW team to be presented today
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Parameter Priors and Linked Assessments

» Meta-analysis: Two recent papers by Thorson, Taylor,
Stewart and Punt develop a mixed effects model to
integrate results across SS applications for several

west coast species
* Estimate life history ratio: M/K
* Estimate coherence in recruitment deviations

» Survey Q, F, survey process errors, and other factors
are amenable to derivation of informative priors by
linking assessments of multiple, co-occurring species

iy
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Are We Estimating the Right Factors?

Some Common PraCticeS (a) Longline gear Areas 3-9

« Hold M constant, but contemporary M is among the
least known factors!

 Put parametric, or complex non-parametric (right),
statistical constraints on selectivity of fisheries

 Use age-specific surveys, so each has fully
independent Q

 Treat survey Q’s as having only uninformative priors

 Estimate population conditioned on above, but many
degrees of freedom in the age composition data go
Into the selectivity estimation
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What Could We Do Differently?

 (Gear experiments, tagging studies and spatial
distribution studies to make direct measurement of
selectivity, or linkage of Q between ages in survey;
include goodness of fit to selectivity data in models

 (Gear experiments and and spatial distribution
studies to put priors on overall survey Q

» With information on Q and selectivity; M estimation
becomes more feasible

s,
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Ecosystem and Assessment Models
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Three Approaches

1. Deterministic: Expand system so that M, = f( E,) is
now inside the system

 Multi-species models take this approach (Curti et al)
* Also recruitment driven by environmental time series

2. Random Effects: Treat M, as a random process and
integrate over the range of possible values to obtain
an estimate of the average performance of the
system, and its variance. The posterior distribution of
M is determined by the prior on M and the information
in the conventional “inside the system” data. E
remains outside the model system.

3. E as DATA, like a survey of the state variable M.

;)
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External Factors as Data Regarding Deviations

 Expected value of factor E; is a function of state variable M,. Same logic as
expected value of a survey is a function of the state variable Biomass,

» Model includes the logL from deviations (E; - e(E,) ) in the objective function
« Example:
 Recruitment as a random process with annual values R,
« Asurvey, O,, of young fish is considered a measure, W|th sampling error, of R,
s0 e(0))=f(R)
 This survey could have been an annual measure of some environmental

factor. From the assessment model’s perspective it is just a datum that is
informative about R,

* The estimates of the R, will depend upon the conventional data, e.g. age
compositions and young fish surveys, and the new ecosystem/ environmental
data

» Stock Synthesis provides this approach for the recruitment process, and soon other
random processes

R
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SUMMARY

 (Generalized assessment models can provide
consistent results from a diversity of data types

* Need best practices guide and good A.l. in model
interface

 Simulation studies are key to understanding model
performance in face of diverse data and structural
situations

 Must build process error generation into these
studies

iy
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LOOKING FORWARD

« Meta-analysis across species will improve informative priors

« Environmental data and ecosystem model outputs will routinely be
used as “data” about time-varying model processes

 Direct studies on selectivity and catchability will provide better
estimation of M and the population

« A protocol for consistent derivation of reference points and harvest
policies when vital rates are time-varying or ecosystem linked,
including detection of regime shifts, will be developed

* Models that include spatial sub-structure will be applied in relevant
situations

« Perceived boundary between single species and multi-species models
will disappear; just more code and more to review

« Assessment results are imprecise and will feed into MSE evaluated
management procedure, not simple control rule: C=F*B .

o,
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Challenges for fisheries stock
assessment: illustrated with
absolute abundance estimation

Mark Maunder
Inter-American Tropical Tuna Commission (IATTC)

Center for the Advancement of Population Assessment
Methodology (CAPAM)



Preliminaries

* First, | would like to thank the organizers for
inviting me here and giving me the opportunity to
oresent and ISSF for financial support

* |tis an honor to be in the same session as Sydney
Holt, one of the pioneers of modern stock
assessment

* However, it is disappointing how little progress
we have made since Beverton and Holt published
their stock assessment manual in 1957.



Major advances

Age-structured models

VPA, Cohort analysis
Pope, Shepherd, Laurec

Generalized production model

Pella and Tomlinson 1969

Integrated analysis and the software to implement it

Fournier and Archibald 1982
CAGEAN, Deriso, Quinn, and Neal 1985
Fournier’s AD Model Builder

General models
* Coleraine, MULTIFAN-CL, CASAL, Gadget
* Stock Synthesis — Methot (Keynote)
Length-structured models
* Punt

Bayesian analysis

University of Washington
* Hilborn, Punt, McAllister

In the 1990’s Bayesian statisticians were impressed with the complexity of Fishery Bayesian
applications

Management Strategy Evaluation

International Whaling Commission; De la Mare
Butterworth, Punt, Sainsbury, Smith, ...
Bentley (Keynote)



Basics: Data and information

Data

— Typical data
* Catch
* Index of relative abundance
* Age and length composition data

— Other data
* Tagging
Information needed
— Absolute abundance
— Abundance trends
— Biological processes
* Natural mortality

e Growth
* Recruitment

— Fishing processes
* Selectivity



Basics: Absolute abundance

* |Importance

— TAC = harvest rate * abundance

* |Information
— Index of relative abundance
— Age and length composition data
— Tagging data if you are very lucky!



Index of relative abundance



Relative abundance
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Age composition data



Age composition data

B=C/F

Concept: If you can estimate fishing mortality and
you know catch, then you can estimate abundance
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Catch curve: natural mortality
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Relative abundance
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Catch curve: selectivity

 What you observe
 What F each age experiences

 F also varies over time



Catch curve: recruitment variation
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Relative abundance

Catch curve: sampling error
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Catch curve: what you see

- Catch curve

12




Length composition data

An additional complication for catch curves
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Length composition: mortality

0.35

0.3 -

0.25 -

Frequency
o
N

o
[EEN
wu

\ Fishing and

Natural mor

2 4 6 8 10 12 14
Length

16 18 20

tality




Length composition: recruitment
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Length composition: sampling error
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Length composition: what you see
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Length composition: major problem

* Asymptotic length



Length composition: asymptotic length
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Length composition: asymptotic length
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Length composition: Variation of length-at-age
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Length composition: Variation of length-at-age
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Management: Biology on Bmsy/B0O

M K
0.10 0.20 0.30
h=1.00
0.10 0.27 0.23 0.19
0.20 0.26 0.22 0.17
0.30 0.23 0.11 0.15
h =0.75
0.10 0.33 0.31 0.29
0.20 0.32 0.30 0.29
0.30 0.31 0.30 0.28
h = 0.50
0.10 0.39 0.38 0.36
0.20 0.39 0.38 0.37
0.30 0.38 0.37 0.36

Maunder, M.N. (2003) Is it time to discard the Schaefer model from the stock assessment scientist’s toolbox? Fisheries Research, 61: 145-149,



Management: selectivity

Fishing method MSY 5/5; Effort mukiplier
Current mixture 248 0.23 1.19

Longline 425 0.26 66.47

Dolphin associated 3 7 0.26 3.06
Free-swimming schools 199 0.14 4.72

Floating objects 144 0.13 7.60

Maunder, M.N. (2002). The relationship between fishing methods, fisheries management and the estimation of MSY. Fish and Fisheries, 3: 251-
260.



Requirements for Interpreting data

* Natural mortality
* Recruitment

— Stock-recruitment relationship
— Annual variation

* Growth
e Selectivity
 Sampling error



Growth



Uncertainty in growth estimates
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Fork emgth {om)

Chang, S-K. and Maunder, M.N. (2012) Aging material matters in the estimation of von Bertalanffy growth parameters for dolphinfish
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Modes in length frequency data differ
from otolith aging.

Survey 2000-2006
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Tropical tuna aging
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Aires-da-Silva et al. (submitted) Improved growth estimates from integrated analysis of direct aging and tag-recapture data: an illustration with
bigeye tuna (Thunnus obesus) of the eastern Pacific Ocean with implications for management. Fisheries Research.



BET growth (get L2 sensitivity analysis
estimates)
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Aires-da-Silva et al. (submitted) Improved growth estimates from integrated analysis of direct aging and tag-recapture data: an illustration with
bigeye tuna (Thunnus obesus) of the eastern Pacific Ocean with implications for management. Fisheries Research.



Stock-Recruitment



Bias in estimating steepness
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Lee et al. (2012) Can steepness of the stock-recruitment relationship be estimated in fishery stock assessment models? Fisheries Research 125-
126: 254-261.



Robust steepness assumptions

(a) Steepness =1
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Zhu et al. (2012). Implications of uncertainty in the spawner-recruitment relationship for fisheries management: an illustration using bigeye tuna
(Thunnus obesus) in the eastern Pacific Ocean. Fisheries Research 119— 120: 89— 93.



Survival implications of the Beverton-Holt and Ricker models
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The MTM Low fecund stock-recruitment
relationship

£
|

Pre—recruit survival, 5,
Recruitment, A,

Spawning biomass

Taylor et al. (2013) A stock-recruitment relationship based on pre-recruit survival, illustrated with application to spiny dogfish shark. Fisheries
Research 142: 15— 21.



A stock—recruitment model for highly fecund species
based on temporal and spatial extent of spawning

Recruitment
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Maunder, M.N. and Deriso, B.R.
(2013) A stock—recruitment
model for highly fecund species
based on temporal and spatial
extent of spawning. Fisheries
Research 146: 96-101.



Natural mortality



Summer flounder natural mortality

* Value used not based on data or any
reasonable rationale

 Obvious sex differences in M

* Changing the assumed male M from 0.2 to 0.3
changed the recommendations from closing
the fishery to increasing the TAC

M.N. Maunder, R.A. Wong. 2011. Approaches for estimating natural mortality: Application to summer flounder (Paralichthys dentatus) in the U.S.
mid-Atlantic. Fisheries Research 111, 92— 99.



Estimator:

Jennings & Dulvy’'s
Roff s Second
Groeneveld's

‘Peterson & Wroblewski's |

Lorenzen's

Gislason's First and Second

Griffiths & Harrod's
Cubillos’

Frisk's

Jensen's Second

S|

Dijabali's

Paulfs.

Charrm-u&Berngan's

‘Rikhter & Efanov's Second |

Roffs First
T T T P rc—

Alverson & Carney's
Zhang&hl&gmfa
Rikhter & Efanov's First

“Jensen's First

Alagamja's

Bayliff's

Hoenig's
Sekharans
Tanaka's
‘Ralston’s

.. chhmgtnn's.

Dependent on regression
Estimates £ over years
Dependent on single maximal age
Affected by senescence
'Requires validated ageing protocol
lgnores sample size

Requires extreme assumptions

Requires estimate of effective n

Requires data from unexploited era

Dependent on estimate of K
‘Requires other growth parameters | |
Requires validated age at maturity
Requires length at maturity

Requires lemperaiure value ._. ...... ............. ............

Figure 1 Summary of some limitations of, and challenges confronting application of, the M estimators. The fourteen

limitations and challenges are explained in the text, primarily under the first of the estimators concerned. Shading
indicates that a named estimator is affected by the specified issue.

“None of the 30 can provide accurate estimates for every species, and none appears
sufficiently precise for use in analytical stock assessments, while several perform so
poorly as to have no practical utility” (Kenchington 2013).

Kenchington, T.J. (2013) Natural mortality estimators for information-limited fisheries. Fish and Fisheries x: x-x
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Natural mortality

Lee et al. (2011) Estimating natural mortality within a fisheries stock assessment model: an evaluation using simulation analysis based on twelve
stock assessments. Fisheries Research, 109: 89-94.



Selectivity



Selectivity
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Selectivity
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16

Waterhouse et al. (in prep) Fisheries Research.
Also see Sampson and Scott (2011) Canadian Journal of Fisheries and Aquatic Sciences 68:1077-1086.




Catchability =1

* Consistently proved to be an incorrect
assumption



Sampling error

* Effective sample size for correlated
composition data
 Modeling process error

— Assumed in the observation error

— Temporal variation in growth, M, selectivity,
catchability

* Data weighting



Abundance diaghostics



RO likelihood component profile

Correctly specified

— Taotal

Run &

-In(Likelihood)

Wang et al. (in prep) RO profiling as a diagnostic for selectivity curve structure in integrated stock assessment models. Fisheries Research.



RO likelihood component profile

Correctly specified Incorrectly specified

Taotal o Run & Total

Run &

-In(Likelihood)

Wang et al. (in prep) RO profiling as a diagnostic for selectivity curve structure in integrated stock assessment models. Fisheries Research.



Age-structured Production Model Diagnostic

* Index consistent with dynamics and catch
* Influence of composition data

* Recruitment variation or regime changes



Spawning biomass

Hypothetical example 1:
composition influence

120000 -~
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80000 -
60000 -
40000 -

20000 -

0

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

== ASPM Integrated Comp down weighted




Spawning biomass
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Hypothetical example 2:
mispecified steepness

1980 1985 1990 1995 2000 2005 2010
== ASPM Integrated ASM Rdev ASPM hest

2015




Research impediments: why we have
not made progress

Rogue academics seeking fame and funding

Trendy “soft” science for fisheries management:
climate change, ecosystem based management,
marine protected areas, environmental
correlations

Focus on easy publications (e.g. the first to put an
archival tag on a species)

Lack of assessment scientists

Assessment scientists have to do assessments
and not research

More assessments requested (e.g. result of ACL's)



Summary

We don’t know much about

— Growth, recruitment, natural mortality, and selectivity

These are vital for interpreting data and providing
management advice

It is difficult to do research on these topics for a
number of reasons

We either need to prioritize this research or apply
management that is robust to uncertainty (not
just be conservative)
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Overview

 Which assessment detalls and
process-error* assumptions matter most?

— Selectivity
— Natural mortality

— Catchability
* Survey and CPUE

 Application and developments

*Process errors are time-specific



Why is accounting for
process errors important?

For appropriate uncertainty estimation

— In Alaska some FMP control rules require

" estimate of uncertainty

— Nationally, ACLs formally depend on scientific

uncertainty

and...the expected value never happens



Sources of uncertainty in pollock F, .,
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Effect of uncertainty on TAC upper limit

. (eastern Bering Sea pollocR)

ABC relative to OFL
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General process-error
Implementation detalls
e [3ayesian
 Non-stationarity allowed

 TakRes advantage of unallocated arrays
(ADMB feature)

* Intermediate to full random-effects (SAM)
— But possibly with better intuitive properties?

G Gl i B

FAST, ACCURATE, STABLE OPTIMIZATION

A



Overview

 Which assessment details and process-
error assumptions that matter the most?
— Selectivity
— Natural mortality

— Catchability
* Survey and CPUE



Selectivity estimation

« Can affect population scale
— Surveys/indices
—Fs

* Time-varying method
— [Penalized liRelihood

 How to objectively set year-to-year
variability?
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Diagnhoses on retrospective
patterns
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Alternative
reduced-parameter approach...

Triple-separability

Attributed to Dmitri Vasilyev TISVIPA—adds a
cohort effect to year and age

TricR Is In normalizing

— Consider 10 ages and 30 years...time-varying
selectivity HIGHLY parameterized...

Parameters by age, by year, and cohort
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Time-age
varying
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Overview

 Which assessment details and process-
error assumptions that matter the most?

— Selectivity
— Natural mortality

— Catchability
* Survey and CPUE

 Application and developments



North Sea cod with random walkRin M
State space RE (SAM)
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Natural mortality
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Conclusions

* Accounting for process errors should be
included for management parameters

— Either directly (e.g., formally risR-averse) or

— Developing operating model for management
strategy evaluation

* Objective methods for model selection should
Include retrospective (including cross-
validation) evaluations

 Approach here useful for quick evaluation of
information content of data

— E.qg., if there is a reflection of ecosystem effects
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AT Asurveylexploitation vector
autoregressive model

NOAA for use in marine fishery
FISHERIES stock assessment
Grant Thompson

Alaska Fisheries Science Center



Two problems

* Conventional “data-rich” assessment models contain
some notoriously hard-to-estimate parameters, e.g..

* Natural mortality rate (M)
* Survey catchability
* Stock-recruitment “steepness”

« Conventional “data-moderate” assessment methods
often imply some very strong assumptions, e.qg..:

* Exploitable biomass = survey biomass
* Projected expl. biomass = current expl. biomass
* Fysy =M

@\ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 2
i H NOAA FlSHERlES This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
R 4 It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.
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A possible answer to both problems: SEVAR

« Stands for “survey/exploitation vector autoregressive”
 Uses survey index (b) and catch (c) data only
* Linear time series with p lags in two state variables:
* Relative biomass r = b/b
* Exploitation rate u = c¢/b

 Even though survey index may be relative, absolute
catch recommendations can be developed, using:

* ¢ =D x (c/b)
* Uy €stimated, no parameter values assumed

ave

J’@\ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 3
%7‘ f NOAAFISHERIES This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
2~

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.



“But population dynamics are nonlinear”

» Here is a time series of stock sizes from a model
with randomly varying exploitation rate, a Ricker
SRR, and no process error or observation error:

1051

Vi 100

Aln

@\ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 4
i H NOAA FlSHERlES This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
R 4 It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.
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Can a linear model mimic nonlinear dynamics?

* Here is the fit to the same data from a linear model
with an optimized number of lags (=3, by AlC):

T
1051
Vi
100
vestt
LR N
951
1
0 20 40 60 80
t
L~ \ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 5
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State-space form, part 1

* Transition equation:

0

| Tt

+ ¢+ £proy

Uik

,2pro

 and where I'), = 2x2 matrix, ¢ = 2x1 vector, and
2.pro = 2x2 matrix

.....

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 6
This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.



Develop r isocline from transition equation
* |f ris in equilibrium, transition equation for r becomes:

o =( 200 ) e £ (T,

k=1
» Solving the above for r,,, gives a linear isocline in u:

_(i(n)lzj i+

\

* Meaning: ry,qy = Iy/2, Uysy = Ug,/2; like Schaefer

s,

- \' U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 7
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State-space form, part 2

 Observation equation:

robs;

- uobs; |

e where

gobs; ~

o
N( ,Zobstj
_O_

* and where D, = 2x2 identity matrix or 2x2 zero
matrix, and Zobs, = 2x2 matrix

.....

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 8
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Parameters

* Total number of parameters = 4x(p+1)
o [' > 2x2xp, ¢ — 2, 2pro - 2
» Off-diagonal elements of Xpro assumed = 0
* Number of lags p is a “pseudo-parameter’
* Fixed for a given run, profile across runs
 Choose optimal value by BIC
* Observation error covariance Zobs, assumed known

 Follows from standard errors of observed ¢ and b
and the relationship between b and c/b

@\ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9
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Estimation

* Problem: estimation of parameters in state-space
models can be difficult

» Combination of process and observation error

* For a linear model with only one lag (p=1), the Kalman
filter gives the correct marginal likelihood after the
states have been integrated out

 But we are allowing p>1

 Aneat trick: by stacking and augmenting matrices in a
certain way, the 2-dimensional state space model with
p lags can be transformed into a 2p-dimensional model
with only one lag, with the same number of parameters
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South African anchovy: fit to survey index

e=fl==Base model estimate = ==@==Qbserved

8.0E+06

7.0E+06 T

6.0E+06

5.0E+06

4 .0E+06

Survey index

3.0E+06

2.0E+06

1.0E+06

0.0E+00 . . . T T . T

1980 1985 1990 1995 2000 2005 2010 2015

f@\ U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 11
{vmj NOAAFISHERIES This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
.

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.



SA anchovy: observation error bootstrap

e=fll== Base estimate ==@== Mean bootstrap estimate < <4« Median bootstrap estimate
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SA anchovy: CDFs of In(depletion) and In(OFL)

In(depletion)

=@ CDF from bootstrap

= = = | 90%Cl (bootstrap) —
= = = J90%CIl (bootstrap)
CDF from Hessian

= = =| 90%Cl (Hessian)

= = = J90%CI (Hessian)

0.5

In(OFL)

=== CDF from bootstrap

= = = | 90%Cl (bootstrap) —
= = = J90%Cl (bootstrap)
CDF from Hessian

= = = | 90%Cl (Hessian)

= = = J90%Cl (Hessian)
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Future directions

* Need to determine whether it actually works

* Simulations conducted so far (with very small
sample size) indicate that SEVAR works at least
as well as a full age-structured model

» Seemed to perform about as well as most age-
structured models at the SISAM workshop

* |nclude routines for model averaging (across p)
* Allow parameters to change between time blocks
» Make the code usable by other people
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Addressing challenges in single species
assessments via a simple state-space assessment

model.

Anders Nielsen & Casper W. Berg
an@aqua.dtu.dk M2,=

DTU Aqua
National Institute of Aquatic Resources
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Features of deterministic models

+ Super fast to compute
+ Fairly simple to explain the path from data to stock numbers (especially VPA)
— Difficult to explain why it works (converges), and what a solution mean

— These algorithms contain many ad-hoc settings (e.g. shrinkage, tapered time weights)

that makes them less objective
— No quantification of uncertainties within model

7 What exactly is the model
- The assumptions are difficult to identify and verify

- With no clearly defined model more ad-hoc methods are needed to make predic-

tions

— No framework for comparing models (different settings)
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Features of full parametric statistical models

+ + 4+ + o+

Acknowledges observation noise

All model assumptions are transparent

Different model assumptions can be tested against each other (e.g. is F5 = Fg?)
Different data sources can be included and correctly and objectively weighted
Estimation of uncertainties are an integrated part of the model

Trade-off between the number model parameters and flexibility of the model
(e.g. Foy vs. Fuy = Safy)

Too often ad-hoc solutions are needed (e.g. fixing variance parameters, or setting

fixed penalties)

More advanced software needed (ADMB!)
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State-space assessment models

This model class® is used in most other quantitative fields
It is a very useful extension to full parametric statistical models.

Introduced for stock assessment by Gudmundsson (1987,1994) and Fryer (2001).

The reason state-space models have not been more frequently used in stock assessment

is that software to easily handle these models has not been available
Can give very flexible models with low number of model parameters
For instance we can include things like:

F3, 1s a random walk with yearly variance o’

Importantly o is a model parameter estimated in the model.

®a.k.a. random effects models, mixed models, latent variable models, hierarchical models, ...



~anielsen/index.html

Illustration of the three types of models

Fishing mortality

True unobserved random walk

o o  Noisy observations

— Deterministic reconstruction

"‘ = Fully parametrized (paired) reconstruction
) J— 95% confidence limits

— State—space reconstruction
=== 05% confidence limits

Time
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Model

States are the random variables that we don’t observe (N, Fg y)

(log(Ny)> . (log(Ny_1)> .

10g(Fy) log(Fy—l)

Observations are the random variables that we do observe (C, ,, I (S))

a,yr La,y
<1 ﬂ$>O<F >+%
og(ly ") Y

Model and parameters are what describes the distribution of states and observations

through 7', O, n,, and g,.

Parameters: Survey catchabilities, S-R parameters, process and observation variances.

All model equation are as expected:
e Standard stock equation

e Standard stock recruitment (B-H, Ricker, or RW)

e Standard equations for total landings and survey indices
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Avoiding ad-hoc choices — Eastern Baltic Cod
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0.0

2008
) XSA Shrinkage
0.5
SAM
®
® XSA Shrinkage
0.75
60 70 80 90 100 110 120 130 140 150 160
SSB

e Using the State-space Assessment Model (SAM) gives us an objective criteria
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Evolving selectivity — North Sea Cod
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From Fryer’s listed disadvantages

e Requires normally distributed errors. No, but they are still convenient.

e Requires linear approximation of non-linear equations. Not anymore.

e There is some arbitrariness in the starting values. Not anymore.

e The likelihood can be very flat. No change.

e Maximum likelihood estimation can take a long time. 1-2 minutes on my laptop.
e Initial coding is hard. ADMB makes it easier

e Favours status quo.
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Robustifying

e In the standard model Alog F,, = log F, — log F,_1 is assumed Gaussian
e Instead use a mixture, such as: Alog £}, ~ (1 —p)N(.,.) +pti(.,.)

e Same technique can be used to robustify w.r.t. observation outliers or recruitment

spikes.
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Robustifying w.r.t. recruitment spikes (Haddock)
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stockassessment.org, SISAM-haddock-for—figs, r2219

e Comparing Gaussian (gray) with robust - no visual difference.

e (Gaussian process assumptions were not restricting recruitment.
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Robustifying w.r.t. Fishing mortality (Haddock)
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stockassessment.org, SISAM-haddock-for-figs, 12219 stockassessment.org, SISAM-haddock-for-figs, r2219

e Implies a big change in one years recruitment

e To accommodate the change in R, F,—1 changed a lot in those years
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Robustifying w.r.t. observed catch (Haddock)

Recruits
100000 200000 300000

0
|

[ I I I |
1970 1980 1990 2000 2010
Year

stockassessment.org, SISAM—-haddock—for-figs, r2219

e Makes the model tolerant of outliers
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Summary

e State-space assessment model is a valid alternative when:
— Catches cannot be considered know without error
— Quantification of uncertainties are needed
— Ad-hoc specifications are problematic
— Parametric structures are considered too rigid

— The number of model parameters are worrying

e Robustifying is a useful techniques for:
— Making the model tolerant w.r.t. outliers
— Identifying problematic model assumptions

— Allowing “big jumps”
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1.06 Evaluating predictive power of VPA and
SCAA models when natural mortality is non-
stationary

Sean Cox Doug Swain
Sch. of Res & Environmental Mgmt Gulf Fisheries Centre
Simon Fraser University Fisheries and Oceans Canada

Burnaby, BC Canada Moncton, NB Canada



Non-stationarity in natural mortality rates of
Atlantic cod: contrasting estimation performance of
virtual population and statistical catch-age models

Sean Cox Doug Swain
Sch. of Res & Environmental Mgmt Gulf Fisheries Centre
Simon Fraser University Fisheries and Oceans Canada

Burnaby, BC Canada Moncton, NB Canada



RV Biomass Index (kg/tow)

1
70

® SGSL cod
e I 66 66° 64 620 60° 5 56 5 52
5_ ) RV BlomaSS — % = 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 I"l 1 L 1 | 1 1 1 | 1 1 1 | 1 1 1
|
8] ++++ + + ¢¢++ ¢ + + -2

_ ++ RO +++ ,++++‘.. i

1 9I70 1 9|80 1 9]90 20I00 20]1 0
S. Gulf of St Lawrence
. New
o _A) Atlantic cod, ages 7-11y . Brunswick ¢
" e zZRV| 2
o ZMS ++

o4, o™ R + #{# +
st T T T T

1970 1980 1990 2000 2010

I|III|III|III|III|III|III|III|III|II_|'_

68° 66° 64" 62° 60° 58 96 A 52



Study populations: SGSL and EGB cod
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Rock’em sock’em stock assessments!

SCA




Model for non-stationary M

logM,  ~ Normal(log M
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Input age-composition:

S. Gulf St Lawrence

E. George’s Bank

Fishery

DFO/Industry

NMES

Weight-age

1971-2010 (0.55) age 2-11

RV: 1971-2010 (0.32) age 2-11
MS: 2003-2010 (0.38) age 2-11
LL 1995-2010 (0.22) age 5-11

1971-2010

1978-2011 (0.49) age 1-10

RV: 1986-2011 (0.71) age 1-8

NMFS_S1: 1978-1981 (0.81) age 1-8
NMFS_S2: 1982-2011 (0.58) age 1-8
NMFS_F: 1978-2011 (0.79) age 1-5

1978-2011



SGSL cod: M trends
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SGSL cod: M5-8 and SSB

0.8 -
— 2010
— 2009
—— 2008
0.6 2007
—— 2006
—— 2005
0.4 -
0.2 -
VPA
Y i ——
| 1 1 1
1970 1980 1990 2000 2010
800 -
— 2011
— 2010
—— 2009
600 - 2008
—— 2007
—— 2006
400 -
200 -
0 B
1970 1980 1990 2000 2010

0.8 -

0.6

0.4 -

2010

400 -

2010




EGB cod: M trends
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EGB cod: M5+ and SSB

M 5+
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SGSL simulation tests: M 5-8
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SGSL simulation tests: SSB

VPA-est
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SGSL cod: Simulated Fishery catch-at-age
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SGSL cod: Simulated Survey catch-at-age
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EGB simulation tests: M 5+
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EGBsimulation tests: SSB
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Conclusions

1. Non-stationary M trends comparable for fully-
recruited age classes, but some differences may
be important

2. SCA appears better for M trends, but over-
estimates SSB for both cod stocks

3. VPAinconsistent for M, but always under-
estimated SSB

4. Investigating potential causes for changing M
should consider the stock assessment model used



Selectivity: theory, estimation, and
application In fishery stock assessment models
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Center for the Advancement of
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CAPAM - Selectivity Workshop

Presentation outline

* CAPAM background
* \Workshop statistics
* Results

o Keynote speaker presentations
o Major findings/high priority research areas
* Current and Future work



— Selectivity Worksho

CAPAM background

* Established Fall 2012 under NOAA-SWEFSC, IATTC, UCSD-SIO

* Infrastructure includes principal investigators, post-docs, research associates, collaborators, visiting
scientists, advisory panel, and administrative support staff

* Needs identified in Reauthorization of the Magnuson-Stevens FCMA (2007)

* Mission is research, education, and outreach that addresses animal population dynamics, models, and
assessments associated with marine fishery resources

* Objectives
o Evaluate/improve methods used in fish stock assessment model development and application
o Afford educational and training opportunities to prepare competent researchers in fishery science
o Deliverables include research papers, workshops, short-courses, classes, and stock assessments

* Main programs and specific projects
o Gogd practices in stock assessment modeling (selectivity, growth, data/likelihood weighting, diagnostics,
etc.

o SIO/NOAA education and training for next generation of fishery assessment scientists (classes, graduate
thesis collaboration, stock assessments, etc.)

o White sea bass assessment

* Funding is obtained from formal RFPs, as well as direct contributions



— Selectivity Worksho
Workshop statistics

* Held from March 11-14, 2013 at the SWFSC in La Jolla, CA

* Funded by NOAA, SIO, and ISSF

* 75 participants (USA, Canada, Japan, China, Taiwan, S. Africa, Spain)
* 35 participants via remote access available online (WebEXx)

* Agenda

o 4 keynote presentations under major sub-topics of selectivity
< Underlying processes - D. Sampson
< Specification and estimation - J. lanelli
< Model selection and evaluation - A. Punt
< Impacts on management - D. Butterworth
< Group discussions

o 21 research presentations

o 2 work sessions
< Modeling selectivity/simulation methods using SS - I. Taylor, H-H. Lee, J. Valero
< Developing ADMB software libraries using selectivity examples - S. Martell, A. Whitten, M. Supernaw

o Deliverables
< Interactive and efficient forum for training and information exchange
< Archive of selectivity manuscripts from historical literature
< Workshop report
< Special issue in professional journal (Fisheries Research)
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~— e Results (keynote presentations)
“+ Underlying processes (D. Sampson)

« Gear selection

o Fish species, sex, age, size, behavior, etc. affect which fish contact and are
caught/retained by a specific type of fishing gear

» Spatial locations of the fish and fishing operations

o Fishing gear operates at a local (fish) scale and can only catch fish that are near/contact
the gear

o At a broader (stock-wide) scale, population selection depends on the spatial distribution
of fishing operations relative to the spatial distribution of the fish

« Mixture of fishing gears

o When there are multiple gear types with different selection properties, the relative
catch by each gear type determines the population-level selectivity
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¢ Results (keynote presentations)
% Specification and estimation (J. lanelli)

Functional forms (splines) and ‘smoothing’ %,
o

Non-parametric smooth selectivity

Pros
e Robust estimation

e Flexible

e Easy check

e Rarely headache (few surprises)
e Performance in MCMC

e Extends easily to time-varying

&)

cons
¢ Knowing magnitude of ‘tension’
e Optimal frequency/location of knots
e May perform poorly at tails
e Confounds re-weighting
e Should be tested further

e Objective criteria needed for
‘smoothing’ penalties
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/

~— e Results (keynote presentations)
“+ Model selection and evaluation (A. Punt)

Simulation < Selectivity

e The structure of most (perhaps all) operating models is too simple
and leads to simulated data sets looking “too good”

® Andre’s suggestion: if you show someone 99 simulated data sets and
the real data set, could they pick it out?

e Future simulation studies should
¢ Include model and fleet selection
e Focus on length-structured models
e Examine whether selectivity is length- or age-based
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/

¢ Results (keynote presentations)
“ Impacts on management (D. Butterworth)

Selectivity at older ages

e [ssues arise from the relative paucity of older/larger fish in catches and/or
surveys, for which heavy F at those ages/lengths is not the only possible
explanation

e Analyses ubiquitously point to at least some selectivity doming, with the
underlying mechanisms not always clear

® This can sometimes have important implications for BRPs and associated
management advice

® Those BRPs are unlikely to be robust to alternative explanations of domed
selectivity, higher M, or increasing M at older ages

“.. this is not about the best assessment model,
but about the best management.”
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Results (major findings/high priority research areas)

* Contact selectivity and availability

* General selectivity specification and estimation
* Asymptotic or dome-shape selectivity

* Size- or age-based selectivity

* Fleets as proxies for spatial processes

* Constant or time-varying selectivity

* Poor composition data

* Management strategy evaluations

* Survey selectivity

* Model selection and diagnostics
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- Current and Future work

* Continue with selectivity research, including splines, data/selectivity type: length vs.
age, data weighting, VPA - spatial F/selectivity form

o Establish working group / begin synthesis and documentation related to Good Practices Guide
o Visiting scientist research

* Begin related research projects for GPG (e.g., modeling growth in stock assessments)
o Prepare for growth workshop (late 2014)

® Conduct classes/short courses—SIO and international

* Build on momentum to link with institutions/programs involved in similar research
(regionally, nationally, and internationally)

o Stock assessment modeling issues

o SISAM model setup contributions

o Collaborative work for WCSAM (natural mortality, data quality, retrospective bias)
o ADMB Project

o SS model development

o Joint workshops (national and international)

o Next generation of stock assessment scientists

* Visit Www.CAPAMTresearch.org
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In the news

Celtics shake-up roster and
now to leave Boston, for of all
places ...
Sports, Page C1

Fountain of Youth is in FL and
restores youth not by drinking,
but of all things ...
Health, Page E1

Unifying theory and our
existence finally solved, and by
of all people ... ;

Science, Page D1

Boston Globe

TUESDAY, JULY 17, 2013

WEATHER
TODAY: Sun, some clouds, possmIeT -storms.
High 88-91. Low 79-81.
TOMORROW: Very warm, afternoon showers.
High 92-95. Low 80-83.

IS ON AND WORLD TUNES IN

SEAPORT DISTRICT
WELCOMES STOCK
ASSESSMENT FORUM

WcsAM draws much public and media
attention around Seaport Hotel & World
Trade Center. Scientists from all over the
world will be focusing this week on the
application and future of stock assessment
methods, critical steps for developing
sustainable fishery management advice and
good resource stewardship.

Local, Page B1

Growth workshop to be held
late 2014 in La Jolla, CA

CAPAM will be hosting a
workshop next year on modeling
growth in stock assessments and
registration is expected to be brisk,
if not frenzied. Organizers are
encouraging scientists to get their
research efforts underway soon and
not be left behind for this
important event. Further details
available online by late summer.
Visit wvw.CAPAM research org.
Page A2




Additional data and more complex
assessments - do these provide
improved fishery management
advice?

Helena Geromont and Doug Butterworth

MARAM (Marine Resource Assessment and Management Group)
Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, South Africa




Fisheries management

Key manhagement questions:

» Where are we?

« Stock assessment

» Where do we go?
« Policy decision X

TIME

How do we get there?
« Complex annual assessments
or

« Empirical Management Procedures
(simple harvest control rules)




Why?

Management advice currently based on complex annual

assessments

Typically require regular survey and large ageing

programmes
Costly

Need to explore simpler and cheaper alternatives

Examples: North Sea Sole,

=
=
=
=

Gulf of Maine/ Georges Bank Witch Flounder and Plaice




Basic approach to comparison

Retrospective analyses: go back 20 years.
Project forward with a simple empirical MP.

For a common basis for comparison, tune the MPs to
achieve (at some %-ile) the same final spawning biomass

as in assessment.

Compare performance (catches, variability, etc.) to what

was achieved in practice by the combination of complex

assessments linked to management approaches as applied

over that period.




Management Procedures

(/= index of abundance available annually)

» Constant catch MP
TACy, 4, = TACH9¢t

» Survey slope based MP:
TACy4, = TAC,(1 + 4s,) s, =trend in ]

» Target based MP:

TACy+1 — TAcCtarget [W 1 (1 - W) {]T‘ECent_IO}]

jtarget _j0
.‘.
MARAM



Data: Survey Index
North Sea Sole (Subarea 1V)
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Projections: Stock-recruitment relationship

2-Line (hockey stick):

Number of recruits
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Projections: Stock-recruitment relationship

2-Line (hockey stick):
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Three steps in projections

» Deterministic “hindsight” projections

MP tuned to reach final spawning stock biomass

estimated in assessment (2009 for sole)

Key assumptions:

Same selectivity-at-age vectors
Same S/R residuals
Same survey index of abundance residuals

I as assessment
.‘.
MARAM



Three steps in projections

-

-'> Stochastic “forecast” projections:

MP tuned so that lower 2.5%-ile reaches current biomass

estimated in assessment

Generate future:

Selectivity and weight-at-age vectors: re-sample from past

Stock-recruitment log-normal residuals (cR=0.8 for sole)

« Survey log-normal residuals (o'=0.2 for sole)
ZEE|
o P2



Three steps in projections

-

=)

» Deterministic “hindsight” projection of “forecast” MP:
Use best performing MP obtained in step 2 in

deterministic projection

Key assumptions:

Same selectivity—-at-age vectors

Same S/R residuals

: Same survey index of abundance residuals




Step 1. Deterministic hindsight projections
North Sea Sole (Subarea V)
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Step 2. Stochastic forecast projections:
North Sea Sole (Subarea 1V)

Target MP:
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Step 2. Stochastic forecast projections:
North Sea Sole (Subarea 1V)

Target MP:
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Step 2. Stochastic forecast projections:
North Sea Sole (Subarea 1V)
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Step 1. Deterministic hindsight projections
North Sea Sole (Subarea IV)
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Step 2. Stochastic forecast results:
North Sea Sole (Subarea IV)
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Step 3.Hindsight projection of forecast MP
North Sea Sole (Subarea 1V)
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New England Groundfish

Il Retrospective patterns!!

p—



Assessments: Retrospective patterns
Gulf of Maine Witch Flounder

Spawning Stock Biomass
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Plot copied from F. Witch Flounder by S.E. Wigley and S. Emery. February 2012



Step 3.Hindsight projection of forecast MP
Gulf of Maine Witch Flounder
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Step 3.Hindsight projection of forecast MP
Gulf of Maine/Georges Bank Plaice
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Initial conclusions

MPs perform as well or better than what occurred (based on annual

complex assessments)

Annual assessment based management add unnecessary variation

to management measures without reducing resource risk

Changed role for complex assessments: provide operating models
at multi-year intervals for simulation testing of these simpler MPs

Saving on resources otherwise needed for monitoring (e.g. ageing

41333

of catch need not be annual)




Future work

Apply to more stocks (including tricky assessments)

Comprehensive robustness tests (e.g. include

implementation error)

Performance given reviews after shorter MP

application periods

-
MALAM
&



Paul Rago on ...

New England retrospective problem

“Anyone who can solve our retrospective

problem deserves the Nobel prize”

-
MALAM
&



Initial conclusions

MPs perform as well or better than what occurred (based on annual
complex assessments)

Annual assessment based management add unnecessary variation
to management measures without reducing resource risk

Changed role for complex assessments: provide operating models
at multi-year intervals for simulation testing of these simpler MPs

Saving on resources otherwise needed for monitoring (e.g. ageing
of catch need not be annual)

MP approach seems to be able to handle cases with relatively strong
retrospective patterns

-)
-=)
=)
-=)
-)

U ..
MARAM



Paul Rago on ...

New England retrospective problem

“‘AnyBrg eph solgrer Wupdﬂaﬁthbgﬂ

deserves the Nobel prize”

___our nomination yet?




Thank you for your attention

We thank José de Oliveira, Charlie Edward and
Laurie Kell, for assistance in providing the ICES

assessment data we have used.

Financial support of the National Research Foundation (NRF) of South Africa is

gratefully acknowledged.




What generates retrospective
patterns in statistical catch-at-age
assessment models?

A lot of peoplel234

LUniversity of Washington, School of Aquatic and Fishery Sciences

2CAPAM, Center for the Advancement of Population Assessment Methodology
3Simon Fraser University

4University of British Columbia
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What Is a retrospective pattern?

4000 — Ga) “The retrospective problem is a

3000 - systematic inconsistency among a series
2000, S of estimates of population size, or

' related assessment variables, based on

increasing periods of data.”
0.12 - (© — Mohn, 1999
0.08

0.06 e “There are severe implications for both
4000 5
managers and the stock itself when stock

assessments exhibit strong retrospective
il patterns. Management advice will be biased
] =—-C and could lead to continued overfishing of the
o  TFe stock, inability to achieve rebuilding targets,

1970 1975 1980 1985 1990 1995 and /OSS Of pOtentlaI yi8/d”,

Year

1+ Biomass (KT)

Fi(3-5)

q

3000

1+ Biomass (KT)

2000

F(3-5)

Legault, 2008



Previous studies have explored
retrospective patterns and identified some
of the factors causing them

ICES Journal of Marine Science, 56: 473-488. 1999 Ca n be Ca u Se d by a n U m be r

. . a0 . . . . #
Article No. jmsc.1999.0481. available online at http://www .idealibrary.com on Intﬁil

, , , , B of factors, but all require a
The retrospective problem in sequential population analysis: :
An investigation using cod fishery and simulated data Change In parameter value

R. Mohn or assumed model value
over time

Northeast Fisheries Science Center Reference Document 09-01

* Natural mortality

e Catch series

e Survey catchability
* Closed areas

R P ol
o TEnT OF =

Report of the Retrospective Working Group
January 14-16, 2008, Woods Hole, Massachusetts

by Christopher M. Legault, Chair



Main guestions

 What processes generates retrospective
patterns? Can we generate them In catch-
at-age models?

 What Is the magnitude of these patterns
for different processes?

* Isthe use of time-varying selectivity to
address these patterns appropriate?



This project uses a stock assessment
evaluation framework

Operating
model (OM) 1
Operating
e model (OM) 2 - .
Conditioning | Estimating | Performance
cdeliChl | model (EM) measures
Operating '
model (OM) ... y I|?I0mass
: * Recruitment
Operating e Mohn's p
model (OM) n
_ (X b1y —X (yl:yZ),y)
f= X
(y1:y2)y

All these steps are done using Stock Synthesis as
the simulation and estimation platform



A more detailed description of the
model

Simulation
Catches
Catch comp. data

9P PPPPIOPOPOOPEGEFOEIGEG®EOEE®ES Survey

AAAAAAAAAAAAALAAAAAALAAL Surveycomp data

"~ Estimated: ¢ Growth (K, L, CV) Fixed: « M
* R, * Steepness
Parameters — * Rec. deviations * 0Of
e Selectivity parameters

— ° Q

Retrospective runs 5-year retrospective analysis



Experimental design: 3 fishing patterns, 3

types of change, and 3 processes

Process
Fishing mortality High -
2Fvsy c _ . Base M
DLl Time variance =
) Low
- >
ve Direction of
High 7 change ! L | | |
e
0 L—— . . N 0.0 05 1.0 15
2FMSY ] . ’ 10 1
Two-way trip \ Trend vs. step 5 L at
e
Base 2L --. x 0%
Fusy % be
<@ |
|
Recent vs. |
2FMSS = i ! | not-so-recent
Increasing .
_ | | | '
- 0 50 100 0.
Year =
0™ | |
0 50 100

Year




Retrospective patterns can be
generated when there is model
misspecification

Cod tlme varying




Mohn’s p statistic allows to evaluate
retrospective patterns across scenarios

Mohn’s p
05 0.0

-10

Base

Not-so-
recent

Faster growth
Trend

recent

Slower growth
Trend

Faster growth

NOt-so-  pecent I II

Not-so-
recent

o 8

Slower growth
° Step

Step
o=

X y1y)y — X (y1:y2),y

X (y1:y2),y

)

Scenarios
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Different factors have a different effect

dependlng on the life history type

Mohn's p

Sardines
(What is wrong with you?!!!)

Timing is more
important for cod

than for sardine
and flatfish

Cod N -
(The well-behaved)

But the shape of
change is more
important for <.

sardine and flagofgsh

Scenarios (no I’'m not writing them all out)




What comes next?

1. Tr OR & ?
: p

NER

TI’Ue‘
Converging Diverging
K
wn e <Q
2. & : & &
o = X
2 = %éo G NMDS
& QX
&
3.

Survey
Q
-J

Selectivity

VA

4. What happens when these patterns are
“corrected” using time-varying selectivity?




Conclusions

* Retrospective patterns were generated by
all the factors explored.

 What factors affect retrospective patterns
the most seem related to life history.

* Direction and magnitude of a
retrospective pattern are affected by the
direction and magnitude of the change.

 Higher variability in the data generate
higher variability in the Mohn’s p statistic.
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One Model ... or Three
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Context

This has all been developed within the
ad4a framework

17th July 2013




The Problem

There are often several plausible
assessment models

17th July 2013



Solutions

- Choose one model

- Present several models
- Hierarchical modelling
- Combine models

17th July 2013



Solutions

- Choose one model

- Present several models
- Hierarchical modelling
- Combine models

17th July 2013



Assessment

An Assessment Process

17th July 2013




Model Averaging

Advice

Model
Averaging
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Model Choices in ad4a

With a linear model you can fit
+ linear and smooth functions of age and year
 seperable models
* partially seperable
* non-seperable
- step changes (in level, in smoother form)
* covariates (smoothed and linear)

These can be applied to log F, log catchability, stock recruit
parameters, observation variance.

17th July 2013



Model Choices in ad4a

For example in selectivity

offset

log Q ~ log Contact Selectivity + log Availability
| —

formula

17th July 2013
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Model Selection in ada

* likelihood based

+ AIC (Akaike Information Criterion)

+ BIC (Bayesian or Schwarz Information Criterion)
+ Posterior model probabilities

- HME (Harmonic Mean Estimator)

- BMA (Bayesian Model Averaging)
All these balance complexity and fit.

17th July 2013




Model Choices
(log) fishing mortality

fmodell <- ~ s(age, k = 4, by = breakpts(year, c(199
+ s(year, k = 8)
fmodel2 <- ~ te(age, year, k = c(4, 8))

(log) survey catchability

gmodell <- ~s(age, k = 4)
gmodel?2 <- ~poly(age, 2)

AIC | fmodell fmodel?2
gmodell | 317.238 316.506
gmodel2 | 317.174 316.0118

17th July 2013 10



Model Fits: Fbar
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Model Fits: SSB
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Approaches to Model Averaging

+ weighted simulation schemes

- AIC

* posterior model probability (HME)
* Full model averaging schemes

- smooth AIC (bootstrap)

- RIMCMC

17th July 2013



Approaches to Model Averaging

+ weighted simulation schemes

- AIC

* posterior model probability (HME)
* Full model averaging schemes

- smooth AIC (bootstrap)

- RIMCMC

17th July 2013



Approaches to Model Averaging

We want to sample from:
P(model, model parameters | data)

Weighted simulation schemes do:

1. simulate: P(model|data)
P(parameters | model)

17th July 2013



Approaches to Model Averaging

We want to sample from:
P(model, model parameters | data)

Full model averaging schemes do:
1. simulate: P(model, model parameters | data)

17th July 2013
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Final year Fbar

Prob. Density

0.0 0.1 0.2 0.3 0.4

17th July 2013



Final thoughts

With model averaging

- We incorporate uncertainty from scenario
choice

- It removes the need for model selection
- moves focus onto specifying plausible scenarios

- we can simulate, Fbar, reference points, current
state w.r.t. ref points

17th July 2013




Better data yields better yields ?
Why the type, quantity and quality of data
matters in fisheries stock assessments

Fish 600 group

SFU Wed July 17 2013 CAPAM
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Background

* Not all data available for a stock assessment
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Background

* Not all data available for a stock assessment
- What is important for estimating quantities of interest?

e Several studies have examined this issue

* This study expands the above by investigating the importance of
composition data across three life history types using Stock
Synthesis, a statistical catch at age model



Objectives

* Importance of quantity and quality of composition data
between life-history types
* Quantity: sample size, sampling frequency (number of years and
spacing)
* Quality: survey vs fishery composition data



Method: simulation design

Conditioning
model (CM)

Operating
model (OM) ...

Cod-type
Flatfish-type
Sardine-type

Data
generation

survey data

age composition
length composition
frequency

sample size

All these steps are done using Stock Synthesis
as the simulation and estimation platform

Estimating
model (EM)

Performance
measures

Biomass ratio
MSY
Growth parameter



Method: model assumptions

Operating Model

* All parameters constant over time except:
fishery selectivity

—>asymptotic with time varying L

* Survey samples = Multinomial

* Fishery samples = Dirichlet (overdispersion)

50%

0 20 40 60 &80

Estimation Model Length

M and h are assumed to be known without error
* Estimate growth (except the CVs of growth), catchability, R, recruit. devs
* Estimate NON time varying fishery selectivity



Objective 1: Importance of the different
composition data types

* Hypothesis: Without both the age and length compositions data,
growth is harder to estimate, therefore affecting other parameter
estimates
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Objective 2: How does the importance
of length and age composition data vary
between life-history types?

* Hypothesis: For some life history types, we can more easily track
the cohorts hence we can better estimate growth and other
parameters
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Fishery Age comps

* Fishery Length comps
* Survey Age comps

* Survey length comps

* CPUE

Age comps only

Full fishery data

Length comps
only
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Full data
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Objective 3: Importance of quantity and
quality of composition data among life
history types

* Hypothesis: With less composition data, parameter estimates will
be more biased and more variable but its importance depends on
the life-history types
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Conclusion/Discussion

Cod-like species Flatfish-like species Sardine-like species
e ®
- Length comps - Length comps & . Length comps
| - Age comps
- survey comps - survey comps - survey comps
- Longer survey time - Longer survey time - more frequent survey
period OR more frequent period OR more frequent

= Ionger comps coverage
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Conclusion/Discussion

* Importance of the different composition data types by life-
history types

* length comps is more important than age comps for sardine and cod
(especially from survey). Equally important for flatfish

* Survey comps is important across life history types
* Sardine type fish tend to overestimate SSB depletion




Conclusion/Discussion

* Importance of the different composition data types by life-
history types

* length comps is more important than age comps for sardine and cod
(especially from survey). Equally important for flatfish

* Survey comps is important across life history types
* Sardine type fish tend to overestimate SSB depletion

* Importance quantity and quality of data

* Increasing the survey frequency and coverage important for ALL species
(not as much for cod)

* Increasing survey sampling frequency is more important than coverage for
sardine, equally important for flatfish and cod
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the use of cubic spline selectivity
in integrated stock assessments

J. L. Valero?, I. G. Taylor?, M. N. Maunder!3 and P. R. Cronel*

July 17,2013 WCSAM

1Center for the Advancement of Population Assessment Methodology (CAPAM)
ZNOAA, Northwest Fisheries Science Center, Seattle, WA, USA

3|ATTC, La Jolla, USA A
4NOAA, Southwest Fisheries Science Center, La Jolla, CA, USA — 7i T D

FAST, ACCURATE, STABLE OPTIMIZATION



What are cubic splines?

Smooth piece-wise polynomial functions.

Need to specify of knots, estimate
the value at these knots and the slope at the ends

Spline value




From splines to spline selectivity

Spline GUI
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Why cubic spline selectivity?

* Parametric forms may not be flexible enough

- e.g. Dover sole assessment (Hicks and Wetzel, 2011)
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Understanding splines in ADMB

Splines have long existed in ADMB, but not widely
used for stock assessment selectivity

Implemented in Multifan-CL in 2005

 Several tuna assessments

Implemented in Stock Synthesis in 2011. Only used in
a few formal stock assessments based on SS:

* Dover sole (Hicks and Wetzel, 2011)

e Sablefish (Stewart et al., 2011)

e Skipjack Tuna (Sharma et al., 2012)
* Pacific Bluefin Tuna assessment (Ilwata et al., 2012)



Spline selectivity in Stock Synthesis

* Current options in SS
» User-specified number of knots (at least 3)
» User-specified or auto placement of knots (equally spaced)
* User-specified slope at the ends

* Alternatives
* Model selection for number of knots (e.g. use AIC)
e Alternative knot placement

e e.g. knots in regions where f(x) change is rapid

e e.g. knots in regions with poor fit to the combined composition data



Toy model: What shape?
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Proportion
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Selectivity

From toy model to complex models
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Current and future work

* Test current and alternative methods for spline setup

* Preliminary results show that the current method
performs well, compared to alternatives
* Use simulation-estimation approach in SS to evaluate
the performance of spline selectivity across different
life-histories, data availability and selectivity shapes

e Performance metrics
MSY, SPB, etc

* Provide guidance on good practices for using spline
selectivity
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The natural mortality rate (M) is an important
parameter in most stock assessments.

* Beverton and Holt (1957) citing Russell (1931): Four
primary factors control changes in biomass in a closed
population:

 Recruitment (into the exploited phase)
 Growth of individuals

« Capture by fishing

- M

@‘ NOAAFISHERIES

e




In the assessment context, M is simplified

* M varies by age, size, gender and with time, inter-
and intra-specific densities, temperature and other
environmental factors.

 Most, if not all, of these factors are usually ignored in
estimation of M for use in stock assessment (or for
estimation of M within stock assessments).
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Estimation of M within stock assessment models

 Difficulties:

 Correlation with other parameters, including
* Stock-recruitment relationship including steepness (h)
» Catchability and selectivity
* Fisheries
* Surveys
* Ageing error
* Dependent upon various assumptions in the model

e,

@ NOAAFISHERIES




What if estimate of M is wrong?

* Depends on model, but can have large impact on stock
size and status estimation

* e.9. 2007 U.S. west coast darkblotched rockfish
assessment (Base M =0.07)
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Life History Invariants

 Beverton and Holt (1959)

* von Bertalanffy k and L.,, age and size of
maturity (A, and L), and M (or A5,)-

« MA_=C,
* Mlk=C,orkA. . =C,
« L /L.=C,

&) NOAAFiSHERIES




Considered five published meta-analyses on W

1. Hoenig (1983): M vs. Maximum age (A,...)

2. Pauly (1980): M vs. k, temperature (T) and
asymptotic size (L., or W..)

3. Jensen (1996): Mvs. k

4, (%Jg?erson (1997): M vs. gonadosomatic index
|

5. McCoy and Gillooly (2008): M vs. Tand W.,

Re-analysed each of these data sets.

@‘ NOAA FISHERIES




Hoenig 1983

 Used log-log regression on maximum age data from fish, cetaceans
and mollusks.

* Fishonly: In(Z) =1.46-1.01In(A..,)
 All: In(Z) = 1.44 - 0.982 In(A,..,)

@ NOAAFISHERIES




Hoenig 1983 — Max Age

0 50 100 150

Maximum Age
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Hoenig 1983

Log-Log relationship between Maximum Age and M

log(Natural Morality rate)

log(Maximum Age)

Note: forced slope to be -1

o v

@ NOAAFISHERIES




Pauly 1980

175 data points of M vs. size, k and Temp.

log M=-0.0066 - 0.279 log L..+ 0.6543 log k + 0.4634 log T
Log M =-0.2107 - 0.0824 log W+ 0.6757 log k + 0.4627 log T

 But regression coefficients for fish in general may not apply to some
taxa — e.g. Beverton’s (1992) comparison of Sebastes to long-lived
large mammals, they may have lower coefficients and thus lower M.
(Applies also to Jensen and McCoy and Gillooly 2008 — see below)

@ NOAAFISHERIES




Pauly 1980 - W, T and k
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Jensen 1996

 Thought that because his R? for M vs. k was larger than Pauly’s R?
for log Mvs. log k, log T and log L.,, that his model was just as good,
and the information on temperature and size was not important.

* Found M =1.5k (based on optimal life history theory), or

 M=1.6k (based on Pauly’s data)
« Also: M =1.65/A

mat

 QOthers (Roff 1984, Beverton 1992) found less consistent or tight
relationship between k and M.

@ NOAAFISHERIES




Jensen 1996 - k

Force regression through the origin

o v
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Gunderson 1997

 Gonadosomatic index (GSl) is a measure of relative
reproductive effort.

*« M=1.8"GSl

&) NOAAFiSHERIES




Gunderson 1997 - GSI

Force regression through the origin
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McCoy and Gillooly 2008

 Relate dry mass m and temperature T to biological rate
process — M should show same dependence on m (dry wt
grams) and T (Kelvin).

* Theoretically M = Cp-25g:7340(1/T-1/293)

* Cis taxon dependent
« On average is about 0.4
* For fish is about 3
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McCoy and Gillooly 2008
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Previous approaches to combining meta-analyses

Hewitt et al. 2007

» Looked at 8 meta-analytical methods and given uncertainty in
covariates and, in some cases, uncertainty in coefficients, to get a

range of M for each method.
« Did not consider uncertainty in relationship in a strict statistical manner

Gunderson et al. 2003

 Used confidence intervals to create uncertainty intervals for M using
k and GSI

 These confidence intervals did not overlap

LN
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Confidence Intervals vs. Prediction Intervals

* 95% confidence interval for regression:

X, —-X)°
s“(y,) = MSE L, 12
N (X = X)
* 95% prediction interval for regression:
1 (X, = X)?

Sz(yh(new)) — MSE 1 |

noY (X, - X)

&) NOAAFiSHERIES



Which is correct to use?

 Confidence intervals are correct if all of the variation is due
to observation error (and there is negligible error in the
observation of x).

* Prediction intervals are correct if all of the variation is due
to actual variability in the relationship.

 The truth is in between — somewhere, and is complicated
by likely bias in estimates.

@ NOAAFISHERIES




Hoenig: prediction intervals
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Gunderson: GSI prediction intervals
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Approach
 Use log-normal distributions assuming sigma
calculated from prediction intervals

* Use variance-covariance matrix for Pauly,
McCoy and Gillooly meta-analyses in calculating
prediction intervals.

* Combine these log-normal distributions to get a
prior distribution for M

&) NOAAFiSHERIES




Example: darkblotched rockfish (2007)

@ NOAAFISHERIES

Point Lower Upper
Method | _ . o| 950 PI | 95% PI
Hoenig
Max Age 0.041 0.012 0.135
Jensen
‘ 0.324 0.095 1.107
Pauly
. 0.223 0.073 0.683
Size, k, T
M-G
0.142 0.037 0.548
Wand T
GSI 0.109 0.043 0.272
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Prioron M
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Prior on M for Petrale sole (females)
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Issues

* How to combine priors when not independent
(commonality/overlap of data)?

 One solution is to down-weight those meta-analyses that share
data.

« How do we weight these in general and for different taxa?
* e.g. when we know Sebastes are not typical?

 Are we comfortable with the assumptions of the regression analysis?

« How good are the estimates of the covariates?
 Values used in the original meta-analyses should be updated.

@ NOAAFISHERIES




Beverton 1992

 Growth-Maturity-Longevity (GML) plots based on life history
Invariants:

* Longevity and growth parameters determine optimal age and
length at maturity (see Roff, 1984).

« Relationship between k and Amax (and thus M) are taxon
dependent.

* In particular, Sebastes live long relative to growth rate, so M =
0.3k not 1.6k (Jensen).

@ NOAAFISHERIES




GML plot
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GML plot
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Time-varying natural mortality in fisheries stock
assessment models: identifying a default approach.
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Background
°

Hypotheses for time-varying natural mortality

e Environmental variation;
e Early maturation; and

e Predator prey dynamics.
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Background
°

Hypotheses for time-varying natural mortality

e Environmental variation;
e Early maturation; and

e Predator prey dynamics.
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Background
°

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.
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Alternatives to a single constant M
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Background
°

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

Age-specifid Time-specific

—

J Estimate
time-varying

Estimate
age-varying

0
\

Estimate time- and age-varying M
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Background
°

Goal of the simulation

Determine the

min max solution if you suspect
M is time-varying but you

cannot estimate time-varying

M.
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Simulation framework
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General design

Simulate
100
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Simulation framework
[ 1]

General design

Simulate
100 Sample
years
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Simulation framework
oe

General design

Operating Model
e Fleet=1, beginning in year 1938 (25/100);
e Sex=1:

o Area=1;

Logistic selectivity; and
e Beverton Holt stock recruit relationship

Estimating Model

Growth parameters;

Log of virgin recruitment (Rp);

Logistic selectivity parameters;

e Survey catchability;

Fishing mortality; and

e Recruitment deviations.
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Simulation framework
°

Time-varying M in the operating model
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Simulation framework

Estimating model

catch-at-age, tagging studies, life history, etc.

Age-specific Time-specific

Estimate Estimate
age-varying time-varying

Estimate time- and age-varying M \
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Results
°

Model validation
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Results
°

Linear increase in M - M fixed at the current M
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Results
°

Parameter correlation: Ro and Q
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Results
°

Linear increase in M - Fixed at a low value
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Results
°

Minmax solution without estimating time-varying M
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MARE for fishing mortality in the terminal year
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Future work
.

Future work

Age-specific natural mortality using a Lorenzen curve;
Add sardine-like life history;

How many parameters to estimate as the base case; and

Meaningful metrics.
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Future work
.

Future work

Age-specific natural mortality using a Lorenzen curve;
Add sardine-like life history;

How many parameters to estimate as the base case; and

Meaningful metrics.

Thank you
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Examining common assumptions
about recruitment using the RAM
Legacy Stock Assessment Database

Cody Szuwalski, Katyana Vert-pre,
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Is fish recruitment related to
spawner abundance?

Ransom A. Myers Y E S

Nicholas J. Barrowman

Towards a new recruitment paradigm for
fish stocks

psames INO




* |s recruitment related to spawning biomass?

* Do recruitment dynamics change over time?

 Are changes in recruitment dynamics
synchronous within an LME?



RAM legacy stock assessment database:

* >=20 estimates of recruitment and SSB
* No estimates directly from a s/r curve (the tails of the time series were often removed)

e 224 stocks
I
= = £

o B 3
o @D

o

Although not ‘data’, these estimates are:

1) used to provide management advice
2) incorporate many data sources and represent the best available science
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—— Recruitment
- - - Spawning biomass

S
S am =

1970 1980 1990 2000

‘Sequential t-test for regime shifts’; Rodionov, 2004.



Yellowtall rockfish
Gulf of Alaska

—— Recruitment
- - - Spawning biomass

e

Recruitment




0.74 0.88
66

77% of stocks with recruitment not related to spawning
biomass show changes in average recruitment over time



Recruitment regime

[ I I B
1960 1980 2000

Starry flounder
Shortbelly rockfish
Pacific sardine
Gopher rockfish
Dover sole
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Pacific ocean perch
Pacific hake
Longspine thornyhead
Kelp greenling
English sole
Darkblotched rockfish
Canary rockfish
Chilipepper
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Blue rockfish

Black rockfish
Blackgill rockfish
Cabezon (South)
Cabezon (North)
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e Recruitment for 62% of stocks doesn’t increase as
spawning biomass does.



Be careful with inference from stock recruit models when recruitment is ‘regime-like’?

Rock sole
Gulf of Alaska
—— Recruitment
- = = Spawning biomass

-
= ‘1:
L LR LI
-

=
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Recruitment
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Pacific herring
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Thanks for your
attention!




Retrospective bias + time-varying selectivity

good estimates of management quantities??

Cod-like
time-varying growth

Flatfish-like
time-varying selectivity
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Biomass dynamics model Integrated Analysis Statistical catch at age model



Q A method to identify CPUE

p == values that exceed biological
NOAA plausibility: with application to

FISHERIES Atlantic Yellowfin tuna

John Walter
Shannon Cass-Calay
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2011 ICCAT Yellowfin tuna assessment surplus production model indices -16
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In practice some combined index weighted often produced
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Does an index make biological sense or “Is it consistent
with production model dynamics?”

%increase as function of r and B/K”
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Method definition:;

1. Upper bound (UB,,,) for the following year can be
estimated by assuming that no fishing occurs as follows:

UB;i1 = By + 1+ (By) * (1 — B¢/K)
Where B,and B,,, are biomass at time t and one year

later, K is the carrying capacity, and r is the intrinsic rate of
population increase.
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Method definition, continued

2. Lower bound (LB,,,) for the subsequent year index
value. Where population grows for entire year and then is
reduced by exploitation at end:

LByiq = [By+ 1+ (By) * (1 - B/K)] + (1 -
maxU)

using assumed maximum rate of annual exploitation,
maxU.
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Key assumptions
1. r known
- but method relatively insensitive

2. B1/K, or Bt/K for indices that start later than B1

3. Maximum rate of single year depletion
- maximized if all fishing is at the end of the year

4. Production model dynamics
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Sensitivity analyses to r and B /K

A Sensitivity to the value of r
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Application to 2011 YFT production model indices

- All indices were weight-based indices and assumed to represent the entire
population biomass within the surplus production models

Assumptions

- ASPIC models assumed that B,=K, also use a value of 1 for B, for the
indices that start within the first 6 years of t=1.

- For all other indices we assume that B.=0.5

- =0.46 from ASPIC (Anon 2008) assessment estimate

- Maximum observed single year exploitation rate of 0.41 (Anon 2008 ).

Sensitivity to initial value of B, are presented.
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Performance criteria

1. Magnitude of
divergence

2. Percent of index
values outside of
range

3. Time trends
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ICCAT Working group on stock assessments index evaluation table

Table 1. Elements to evaluate the suffictency of CPUE zenes.

ELEMENT

DESCRIPTION

I

SUFFICIENCY SCORE (1 is poor. J is bast)

2

3

d

J

Diagnostics

Mo diagnostics or
assumptions clearky

Full diagnostics and
assumptions fally

viclated met.
2 Appropnatensess of data exclusions and classifications (e.g., to Mot appropnate Fully approprate
wentfy targeted frips).
3 Geographical coverage Small localized Feprezentz
fishery/survey geographic range of
populaiion
4 Catch frachon Small Large
5 Length of ime series relative to the lustory of explodtation Short Long
& Are other indices available for the same tme period? Many It 1= the only available
mdlex
7 Does the index standardization account for known factors that Mo Fully
mfluence catchability/salectiaty?
8 Are there conflicts between the catch history and the CPUE Yes Mo
responsa’
9 Is the mteranmal variability cutside bislogically plausible bounds | Frequently Seldom
(e.z., SCES2012/039)
10 Are biologically implausible interannmal deviations severe? (e.z., Very severs Mirymual
SCES/2012/035)
11 Azzezzment of data quality and adequacy of data for Low High
standardization puwrposes {e.g., sampling design, sample size,
factors considered)
12 Is thas CPUE time senes confimuons? Very discontmuous Completely

o,

i

http://www.iccat.int/Documents/Meetings/Docs/2012_METHODS_REP_ENG.pdf
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Caveats

Caveat 1: Biological plausibility- defined

according to the biology that we give the BET W LARVAL ZERO INFLATED
model °
$5 1 e | +Obs  —Pred |
24
Caveat 2: index can be highly noisy but 5’ [
still have a useful trend. " e e
0 ¢ *s o . - ¢

1975
1980
1985
1990
1995
2000

Caveat 3: age(s) specific indices... can YEAR
between vary up to level of sigmar.

Caveat 4: models can handle process
error.

é@WFISHERIES 1
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Recap

1.

e,

”Q“

P

7

Method requires: (1) an estimate of r, to which the
method is not particularly sensitive, (2) an estimate
of the stock status at the beginning of index time
series and (3) some estimate of the maxU

Plausibility bounds useful for identifying
unaccounted for process error I.e., interannual
variability inconsistent with model dynamics and
assumptions

Useful for determining suitability of an index but not
sole criterion for exclusion/inclusion

In practice it can identify process error issues not
considered by index authors or included in model

NOAAFISHERIES
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FISHERIES
A stock synthesis model for Western

Bluefin tuna:

Key challenges for moving from VPA to
SCAA
Shannon L. Cass-Calay

John Walter = B :
NOAA-Fisheries SEFSC a8 el e Selence for SUsiaabiiify
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Objectives:

Virtual Population Analysis (VPA)
« PRO: modest data requirements
« CON!: requires strong assumptions (i.e. catch-at-age known )

Statistical Catch at Age (SCA)
Relaxes assumption that CAA is known exactly
Can use length composition directly
Integrated model may better handle process errors
May better estimate growth and productivity

N NOAAFISHERIES
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SS model Data Inputs (similar to VPA and MAST):

« Years: 1950-2011

* Ages: 0-25+

e One Gender (M+F)

* One Area (Western Atlantic)

* 8 Fleets

10 CPUE Indices of Abundance, 1 larval survey (SSB proxy)
« Catch at age from cohort sliced catch at size***

* Age-Based Selectivities modeled with double normal or
logistic patterns

* Biological Parameters fixed:
« M=0.14 Linf = 315 cm, K= 0.089
 Knife-Edged Maturity at 9+
« Fecundity Proxy = WAA

& NOAAFISHERIES
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Fleet Structure:  %Total Landings by Flag and Gear

USA LL USA_CAN_HARP
- 3%
3°/° /
. 8 Fleets: UsA_CAN_TRAP 3%

. JAPAN _LL

. USA_CAN_PS
- USA_CAN_TRAP  CANHaL
.+ USA_CAN_HARPOON
. USA_ HOOK&LINE

. USA_LL

. CAN_ HOOK&LINE

. OTHER

f& \
g §
M i NOAAFISHERIES 4



Modeling Selectivity:

Used age-based
functional shapes
available in SS3

Double Normal: All
fleets and indices
except:

+ Logistic: USA LL,
US_RR>195¢cm,
JAPAN_LL_GOM

—
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o
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o
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o
N

o
o

Double-Normal Selectivity
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« SSB Index: SEAMAP
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VPA Catch at age sliced from catch at length, for each fleet.

D
O) (1) aby
<C

TINYdVYr Sd NVO VSN dv¥L NV YSNANOOJHYH NYD YSNINITHOOH VSN T7vSN



NE>

CAN_HOOKLI

OTHER

IND5_USRR_GT177IND4_USRR_LT143ND3_USRR_115_14WND2 _USRR 66 114

Age (y7)

«Q
D
O

o .- N o -

- N W
TR

KN

= NW,L,OO

NN )
OUBRORINIBRORN
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Stock Synthesis Modeling (nested structure)

1. Age-structured Prod. model (est steepness and RO0)

2. Age comp

3. Age comp and estimate recruitment deviations

4. Length observations- TBD

D



Estimability of productivity in production model

Piner plots

For full age comp
and rec dev model
steepness
bounded at 0.99

&
N
M NOAAFISHERIES
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- ime-varying selectivity for JAPAN LL
Selectivities

11 bounded selex parms

=3
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Age Comp flts Pearson residuals, sexes combined, retained, comparing across fleets
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Preliminarv restilts
SSB
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Recruitment (age 1 equivalents)
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Preliminary conclusions/concerns

- Preliminary results similar to VPA but model performance is poor
due to bounding

- Preliminary model- Fleet structure, time blocks and selex
decisions need to be reevaluated in consultation with national
scientists

- Vagaries of construction of catch at age further complicate
estimation of selectivities > Goal is to move to using observed
lengths

- Time varying selectivities pose a substantial difficulty

@ NOAA FISHERIES



Grand question: when is a VPA better

than SCAA

Vastly time varying
selectivities....

Testable HO:

VPA> SCA when sigma
on CAA < sigma on
annual change in
selectivity

L
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Full model is elaborate and may include surveys.

Common simplifications can be tested by statistical methods.
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State-space approach

First implemented as extended Kalman Filter

Used for many years in Icelandic groundfish assessments,
for model comparison (good performance, in retrospect)

Experimental use with length-based assessments

Recently emulated in ADMB-RE with time-varying selectivity,
stock and recruitment as random effects



Full description of model has been published:

Selection and estimation of
sequential catch-at-age models

Gudmundur Gudmundsson and Thorvaldur Gunnlaugsson
Can. J. Fish. Aquat. Sci. 69:1760-1772 (2012)

Conventional notation is used where:
c, n, f, z represent logs of
Catch, Stock, Fishing and total mortality.



In Kalman Filter all assignments have variance
Nov1, 101~ Nyt - I:a,t - M+ Eat

where the error variance (noise) may be estimated zero.

Emulation in ADMB-RE, no assignments but:

objective_function value g
random_effects_matrix n(a,t)

assuming no covariance:
SEPARABLE_FUNCTION stock( ...)
g += -log(sigma_n)
-0.5*norm2((n(a,t)-F(a,t)-M-n(a+1,t+1))/sigma_n)



Fishing effort is modeled as the sum of the product of
state variables Wi, (with random walk and/or transitory
changes) and preflxed selection patterns by age:

Z ijt j,a 6a,t

where the prefixed selectlon patterns by age are:
[ = [constant, parabola, extreme young and/or old]



The observation error in the catch:
- variance allowed to be parabolic with age

- tested for correlation in residuals

The stock-survey relationship is tested for
non-linearity



Tests on the need to include all variances have been
published in open access:

Some catch-at-age analysis methods
and models compared on simulated data

Thorvaldur Gunnlaugsson
Open J. Mar. Sci. 2:16-24 (2012)

Also compares Penalized Likelihood to State Space.



No gain in estimating noise in F_ . (0 =0)

— May drop random_ effects_matrix f(a,t).

Natural mortality (M) can not be estimated
unless effort is highly variable.

For these four stocks, no evidence against the predetermined
values for M was found in tests, so those values were used.



The results of applying this model to the
NS cod+haddock+saithe and GB yellow flounder are
available online:

http://www.hafro.is/~thg/sisam/

with some ADMB-RE code.



NS cod SSB from retrospective analysis
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NS plaice SSB retrospective analysis
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