PML Plymouth Marine Laboratory

Queen Mary

Listen to the ocean

Mortality of the NE Atlantic copepod Calanus helgolandicus

Jacqueline Maud

Dr Angus Atkinson (PML) Dr Andrew Hirst (Queen Mary University of London) Dr Pennie Lindeque (PML)

jama@pml.ac.uk

Background: Calanus helgolandicus

• Key copepod species – European waters, NE Atlantic

PML Plymouth Marine Laboratory

Averaged Spatial Distribution Source: Beaugrand et al, 2004

- Impact of warming oceans
- Expansion of distribution
- Substitution for *C. finmarchicus*

Background: Station L4 sampling

ymouth

• 15 nm SW of Plymouth

PML | Plymouth Marine

- Inshore, shallow site (~55m)
- Weekly sampling (1988 present)
 - mesozooplankton (200 & 63µm WP2 nets)
 - phytoplankton
 - microzooplankton
 - environmental data
 - *C. helgolandicus* egg production experiments (1992 present)

Research objectives

1. What processes control *C. helgolandicus* population at L4?

2. What are the mortality rates of *C. helgolandicus*?

3. What are the major sources of*C. helgolandicus* mortality?

L4 time-series: seasonal cycles

- C. helgolandicus abundance
- Average seasonality (25 yrs)

L4 time-series: predators

PML | Plymouth Marine Laboratory

Other copepods (cannibalism, intraguild predation)

L4 time-series: C. helgolandicus

Total C. helgolandicus abundance (1988-2012)

Maud et al., 2015; Progress in Oceanography, Vol. 137B; WCO Special Issue

Only 4-fold inter-annual variation

PML Plymouth Marine Laboratory

Progress in Oceanography 137 (2015) 498-512

Questioning the role of phenology shifts and trophic mismatching in a planktonic food web

Angus Atkinson^{*}, Rachel A. Harmer, Claire E. Widdicombe, Andrea J. McEvoy, Tim J. Smyth, Denise G. Cummings, Paul J. Somerfield, Jacqueline L. Maud, Kristian McConville *Pymouth Marine Laboratory, Prospect Place, The Hor, Plymouth PL130H, United Kingdom*

- C. helgolandicus egg production time-series (mean EPR)
- EPR x ♀ abundance (m⁻³) = Total Reproductive Output (TRO)

PML Plymouth Marine Laboratory

> "Grow" population through a year from egg to CV – no mortality

Maud et al., 2015; Progress in Oceanography, Vol. 137B; WCO Special Issue

Mortality: egg hatching success

PML | Plymouth Marine Laboratory

• ~30% - ~70% of eggs to N2

Mortality: matrix model

PML

Plymouth Marine Laboratory

Theoretical copepodite (CI-CV) abundance and observed copepodite (CI-CV) abundance (2002 – 2015)

Proportional mortality

PML Plymouth Marine Laboratory

Density – dependent effects?

Density-dependent mortality in an oceanic copepod population Sa ton Zodogique, 06250 Wildranche-nur-Ma, France In attack for Itelar and Marine Research, D-27568 Bremark aver en sea, directly affecting lank on gical pump of carbon into maare quite sensitive to the for ankton mortality", althor nat rain mortal by rates in such models. Here we present the first ugh there are few data available to term for man moplankton. A high-frequency time ssity-dependent mortality rates of But per capita martality rates of cigs of Columni series reveals oi les. The temporal dynamics of z copia akton p nce of adult females and end as much by time-depend narchicu we dations in 'hot tom up' forcing. The functional form and rates sen for moplankten mertality in ecosystem models the balance of pelagic ecosystems -, modify elemental fluxes into

Ohman and Kirche, (2001), Nature, Vol 412

S8: Poster 341 Djeghri and Atkinson

 Multiple regression predators (medusae, siphonophores, ctenophores, chaetognaths, fish larvae)

PML Plymouth Marine Laboratory

Vertical life-table (VLT) methods (single time-point)

Mortality across stage-pairs - ratio (i.e. egg-NI, CV-CVI)

Vol. 340: 189–205, 2007	MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser	Published June 18
		OPEN ACCESS
Socon	al dynamics and mortality	ratos of

Seasonal dynamics and mortality rates of Calanus helgolandicus over two years at a station in the English Channel

A. G. Hirst^{1,*}, D. Bonnet^{2,3}, R. P. Harris²

¹British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ²Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK

³Present address: Laboratoire Ecosystèmes Lagunaires, Place Eugène Bataillon, CC093, 34095 Montpellier Cedex 05, France

4 years: - Mar 2002-Mar 2004 - 2012-2013

 Copepod stage abundance data

CV-CVI (3^{-1}) mortality rates (d⁻¹)

- Mean **P** rate 0.084 d⁻¹
- Mean **3** rate 0.202 d⁻¹

- Active summer growth period (May-Sept)
- Relationship with SST

- Active summer growth period (May-Sept)
- Predators (multiple regression)

Mortality: non-consumptive

Feb 2013-Jan 2014 – weekly sampling (38 weeks)

Vital stain – neutral red

"Live" copepods - red/bright pink

"Dead" copepods (carcasses)
 white/pale pink

Mortality: non-consumptive

Non-consumptive mortality calculation

	Vol. 427: 1–12, 2011 doi: 10.3354/meps09063	MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser	Published April 12
	FEATURE ARTICLE		O PEN ACCESS
	Influence o mortality and	f carcass abundance on e assessment of population Acartia tonsa	estimates of n dynamics ii
	¹ Virginia Institute of M ² Present address: Universi	David T. Elliott ^{1, 2,*} , Kam W. Tang ¹ arine Science, College of William and Mary, Gloucester Poi ty of Maryland Center for Environmental Science, Horn Poi Maryland 21613 USA	nt, Virginia 23062, USA nt Laboratory, Cambridge,
			1.80
Modified	VLT equati	on	活動

 Total mortality - predator mortality = non-consumptive mortality

Proportion non-consumptive mortality of *C. helgolandicus* copepodites (CI-CVI) - 2013

PML Plymouth Marine Laboratory

Mortality: non-consumptive

Predictors

PML Plymouth Marine Laboratory

- SST
- Stratification Index
- Wind speed
 (24, 48 and 72 hr)
- Tidal data

1. What processes control the *C. helgolandicus* population at L4?

- Reproductive output sets up "potential recruitment", <u>mortality</u> governs ultimate population size
- "Stabilising" effects of mortality
- 4-fold interannual variation

PML Plymouth Marine

2. What are the mortality rates of *C. helgolandicus*?

- Estimate between 90-99% mortality (egg-CV)
- CV-CVI mortality peaked spring and late-summer
- Non-consumptive mortality (0-50%) peaked spring and autumn/winter

- 3. What are the major sources of C. *helgolandicus* mortality?
- Different sources depending on development stage
- Early stages

PML Plymouth Marine

- hatching success/abnormalities (30-70%)
- density-dependent mortality (egg cannibalism?)
- Later stages successive suites of predators (chaetognaths implicated)
- Non-consumptive mortality not trivial (extreme weather?)

Crew and marine technicians RV Plymouth Quest

Plankton analysts – past and present

Mortality: stratification

Timing of onset of stratification as predictor of

"start" of total C. helgolandicus population growth season

Maud et al., 2015; Progress in Oceanography, Vol. 137B; WCO Special Issue

