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> Virus-to-bacteria
ratios (VBR)
measured as proxy
for 'viral importance’
over 25 years

» Mechanistic under-
standing still lacking
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» Strain-specific viruses regulate species diversity in
virus-host coevolution model (Thingstad et al 2014, PNAS)
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» Molecular techniques (DNA
sequencing) from around 1990
= Focus on biodiversity

= Resolving internal
community structure
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» Strain-specific viruses regulate species diversity in
virus-host coevolution model (Thingstad et al 2014, PNAS)
» Explains high abundance of slow growing strains (SAR11)

by costly defense against viruses, rather than starvation, and
reconciles high abundance of SAR11 viruses (vage et al 2013, Nature)
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'Between-communities’ pathways:
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'Between-communities’ pathways:

N Heterotrophic Ciliates —> Copepods
flagellates > phagotrophs
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(Thingstad et al 2014, PNAS)
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Size-selective grazing

Resource competition between
plankton functional types (PFT)
(linked to resource diversity)

Viral infections

Resource competition within
PFT (linked to resource
diversity)

= Unclear how trophic interactions between PFT relate to
organism properties and interactions within PFT (analogy to
understanding 'macro-" from 'micro-economy’)
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» Links coarse PFTs to detailed level of species and strains
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» Links coarse PFTs to detailed level of species and strains

» Transport of bacterial production 'up’ to particulate matter
(sequestration/higher trophic levels) vs "down’ to dissolved
matter (remineralization/decreased efficiency)
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» Links coarse PFTs to detailed level of species and strains

» Transport of bacterial production 'up’ to particulate matter
(sequestration/higher trophic levels) vs "down’ to dissolved
matter (remineralization/decreased efficiency)

» Links genetic information (competiton vs defense specialist)
to biodiversity (within PFT), food web structure and
biogeochemical cycling
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» Transport of bacterial production 'up’ to particulate matter
(sequestration/higher trophic levels) vs "down’ to dissolved
matter (remineralization/decreased efficiency)

» Links genetic information (competiton vs defense specialist)
to biodiversity (within PFT), food web structure and
biogeochemical cycling
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> Increasing COR increases spacing between growth curves

» Lowers minimum growth rate (from summing up strains until correct
community size By o C reached) and hence abundance of grazers
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— High COR favors viruses over grazers,
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> Increasing COR increases spacing between growth curves

» Lowers minimum growth rate (from summing up strains until correct
community size By o C reached) and hence abundance of grazers

= High COR favors viruses over grazers, increasing fraction of bacterial
production shunted 'down’ to viral loop (vs transfer to higher trophic
levels - i.e. high COR reduces transfer efficiency)
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(Photo J. Rose)

» Ciliates exert top-down and

Heterotrophic bottom-up control on bacteria
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» Intermediate ciliate abundance

gives highest bacterial diversity
(analogy to 'Intermediate
Disturbance Theory’)

(Reynolds et al 1993, Hydrobiologia)
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» Low ciliate concentration
= No response to carbon
addition due to mineral
nutrient limitation (C x S)
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(Photo J. Rose)

> Low ciliate concentration » High ciliate concentration
= No response to carbon = Bacterial bloom after carbon
addition due to mineral addition due to carbon
nutrient limitation (C o S) limitation (C o B7)

selina.vage®@uib.no




x 108
6

900 |

7
= slightly lower | 3
2 ® Ccor | E
® & slightly higher | ag.
8 500 CoR | =3
& | &
g | | 2
. >
g I \;
100! !

0 40 80 0 40 80
Ciliates (cells per mL) Ciliates (cells per mL)

(submitted)

» Grazer community and viral abundance highly sensitive to COR

selina.vage@uib.no



. x 108
900 6 <2
E slightly lower | 3 i % M’
2 ® cor | E & 802
» & slightly higher | & L
© | & 20
5’500 COR ;.3
g | & x 15
< | | & 2
= 100l | 10
o 4 s "o 40 80 0 40 80
Ciliates (cells per mL) Ciliates (cells per mL) Ciliates (cells per mL)

(submitted)

» Grazer community and viral abundance highly sensitive to COR
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» Grazer community and viral abundance highly sensitive to COR

» Fraction of bacterial production lost to lysis sensitive to COR

» High COR — Low pimin — Fewer grazers — More viruses

= Less transport up the food chain
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» Grazer community and viral abundance highly sensitive to COR
» Fraction of bacterial production lost to lysis sensitive to COR

» High COR — Low pimin — Fewer grazers — More viruses
= Less transport up the food chain

= Molecular basis of COR linked to grazer abundance and food web
efficiency = Mechanistic framework for VBR
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» Genetic make-up affects ecosystem functioning
— Coupled model touches both ends
» Microzooplankton control total bacterial abundance,
state of limitation and minimum growth rate
> ~ Growth rate differences compensated for by lysis,
=4, but differences determined by COR

— VBR seen as the ratio between mechanisms generating
bacterial diversity and those controlling community size

» Viruses win over flagellate grazers at high COR
— Less transfer of BP to higher trophic levels

» Microbial diversity and food web structure highly sensitive
to life strategy trade-offs (e.g. COR)

— Take-home message for all marine ecologists:




N G MR i AR 4
§ o . ."_ . Bk | 5 £5 Lt el \ - R, - g € .',;!- . ". : '.-.
, - LINK DIFFERENT SCALES! .
: Pt i’ 14 - s, (s '_' 2y .. P 4 3 St e
: 7 1\ oy LA R .r a A, ) o . .‘.; .. 4 A




{9 . ~ ,.”. - “ ""‘. 2 s By
QUANTIFY TRA%E OFFS _
'.- s Q,.‘.‘._f‘ 0-‘- " Vi _" i o il
G " i X . ALctp
y b 0 - oo, o . ‘_‘ i ot -
. .’ . - - ‘._ ..- _“. 7..--_l. ‘- :
.-e ) l. . P . ;‘_ .-.. ._' g
. ’ ; ol ' ." ';:v.f.l\




Slightly lower COR
Slightly higher COR

50 i . 100 150
Species richness

(submitted)

> Links species diversity to community carbon consumption and
hence ecosystem functioning
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» Links species diversity to community carbon consumption and
hence ecosystem functioning

> Resembles generalized diversity-interaction models with some species
redunancy at h|gh richness (i.e. © < 1, 'species-pair contributions to ecosystem function’ slightly

stronger than expected, Connolly et al 2013)
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A PFT model
(cap! d ics , Thil et al 2007, Larsen et al 2015)

Heterotrophic Ciliates (C) Mesozoo—
flagellates (H) i plankton (M)
Heterotrophic Autotrophic Diatoms (D)
bacteria (B1) flagellates (A)
poC / /
(=59 Limiting mine—
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B Virus-host model with nested infection
(predicts bacterial species diversity from strain-specific lysis, Thingstad et al 2014)
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