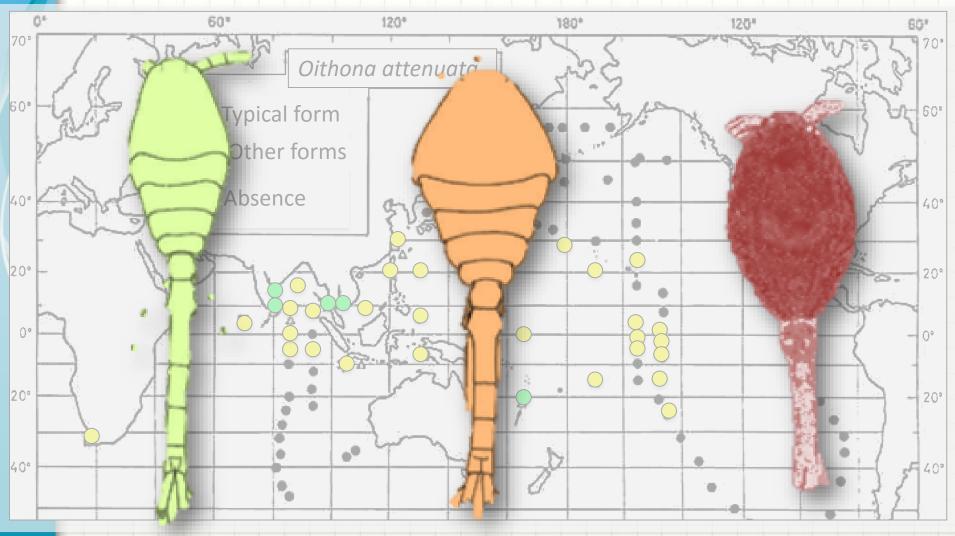
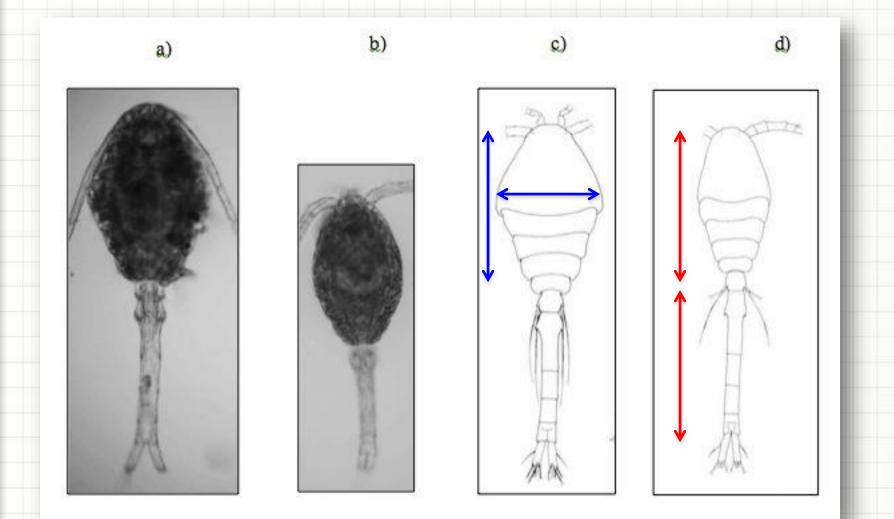

MORPHOLOGICAL AND GENETIC ANALYSIS OF OITHONA ATTENUATA (COPEPOD, CYCLOPOIDA) POPULATIONS IN THE COASTAL WATERS OF SOUTHEAST ASIA, JAPAN AND PACIFIC OCEAN

Mary Mar P. Noblezada¹ Shuhei Nishida² 13 May 2016


¹Marine Science Institute, University of the Philippines Diliman, Philippines ²Atmosphere and Ocean Research Institute, University of Tokyo, Japan

Geographical distribution of Oithona attenuata

Nishida, 1985

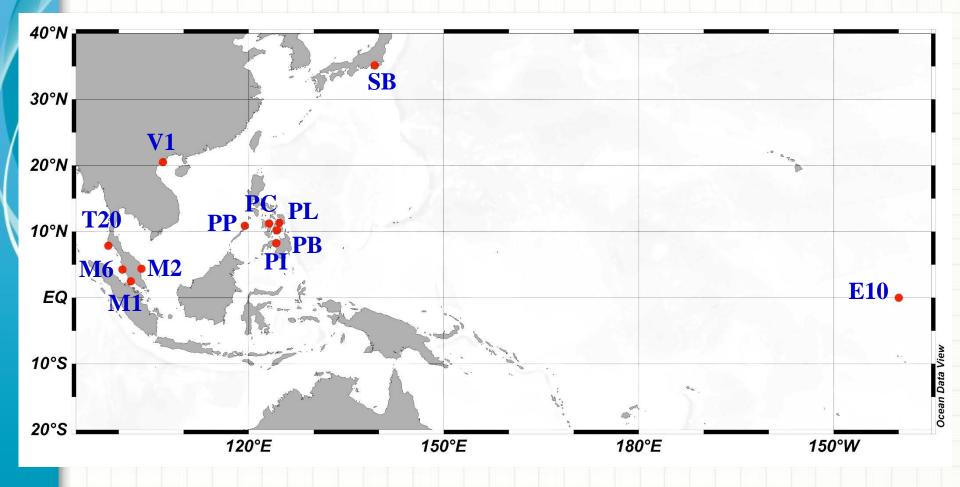

Intraspecific forms of female Oithona attenuata

Typical Stocky

Small

Intraspecific forms of female Oithona attenuata

a and c: stocky form. b: small form. d: typical form. a and b are from costal waters of Malaysia (this study), c and d are from Nishida (1985)

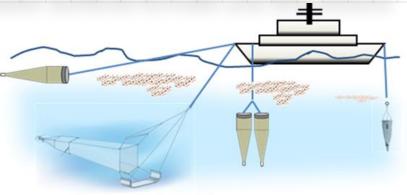

OBJECTIVE

Examines the genetic relationships and morphological variations among populations (small and stocky + typical forms) of *Oithona attenuata* in the Southeast Asia, Japan and Central Pacific

Contribute to our understanding of the mechanisms for generation of species diversity in the pelagic realm

focusing on zooplankton in coastal waters of Southeast Asia

Collection sites of Oithona attenuata



Collection sites of *Oithona attenuata*

	Station			12S	12S	
Sample site	code	Latitude	Longitude	rRNA	rRNA	Measurements
Malaysia	M 1	2.5 ⁰ N	101.8°E	11	12	5
	M2	4.4 ⁰ N	103.5°E	-	-	9
	M6	4.2°N	100.5°E	-	-	5
Philippines	PC	11.2 ⁰ N	123.1°E	-	-	6
	PB	10.2°N	124.3°E	2	2	9
	PL	11.3 ⁰ N	124.7°E	2	1	-
	PP	10.9°N	119.4°E	3	2	-
	PI	8.3°N	124.2°E	2	2	-
Thailand	T20	7.8 ⁰ N	98.4°E	-	-	8
Pacific Ocean	E10	0.0 ⁰ N	140.0 ⁰ W	2	2	1
Sagami Bay	SB	35.2°N	139.4°E	2	1	-
Vietnam	V 1	20.5 ⁰ N	106.8°E	-	2	-
Total				24	24	43
bp				353	303	
No. of small forms				7	6	
No. of stocky/typical	forms			17	18	

Materials and Methods

- 1.) Sample collection
- Hand net (scoop/tow)
- Horizontal/vertical tows (Bongo, NORPAC)
- 🟓 100-300 μm mesh
- Fixed in 5% seawater-buffered formalin and 99% ethanol

2.) Sorting & identification

Oithonids were sorted and identified to species level under compound & dissecting microscopes

Materials and Methods

3.) DNA extraction, amplification (PCR) & sequencing

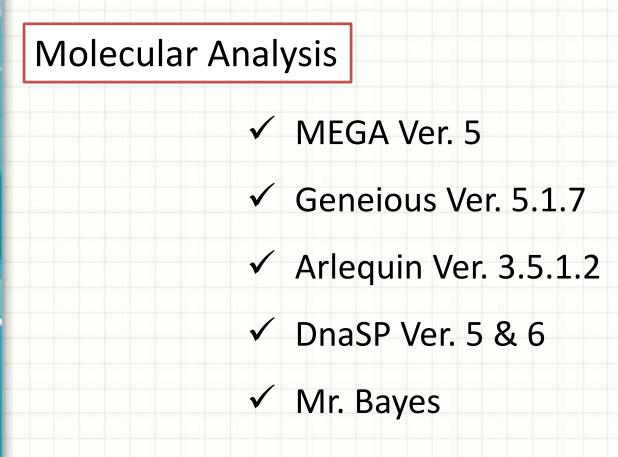
a.) Extraction: QIAGEN Dneasy blood & tissue kit

c.) Sequencing

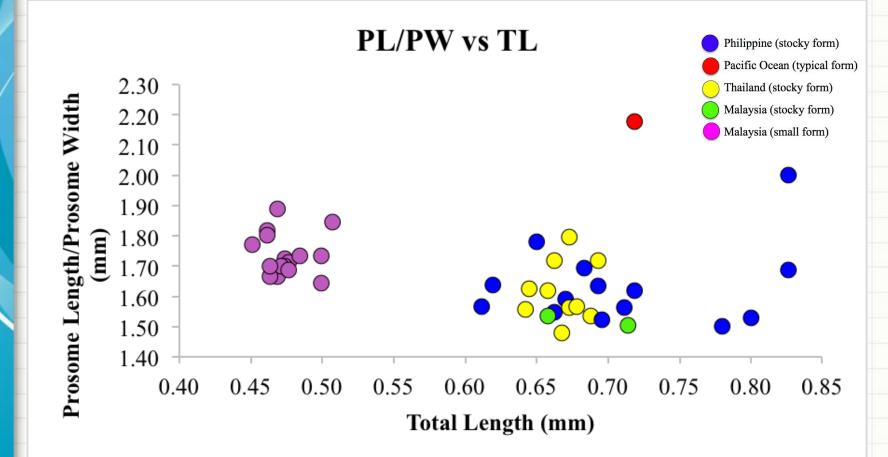
✓ purified with Exosap-IT (GE Health BioScience)
 ✓ Dye-labeled terminators direct cycle sequencing
 ✓ 3130XL sequencer (Applied Biosystems)

b.) Amplification: PCR (9700 thermal cycler, Applied Biosystems Inc.)

Reaction	mixtur	Thermal cycle profile									
	Standard	PCR		1	Standard PCR						
	15կl react	ion		Temp. °C	Time		ŀ				
Reagent	կլ		Initial denaturations		5min		t				
Stabilize Water		7.62	Denaturations	94	- 5s		/				
2.5 կM dNTP		1.20		50							
MgCl2			0			35 cycles	1				
10x Buffer		1.50				,					
Primer (5 կM)		1.80	Extension	72	30s		ľ				
Z Taq (Takara)		0.08	Final extension	72	5min						
Template		1.00			1-0.00		-				

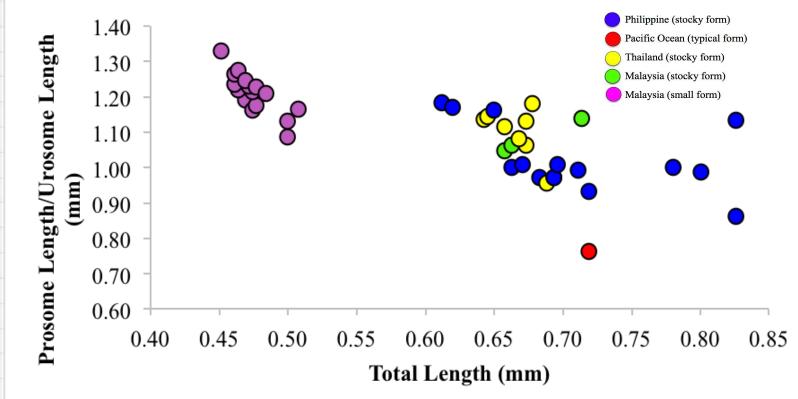

PCR Products were electrophoresed

- ▶1% TBA agarose gel
- Stained with ethidium bromide (band characterization)
- Visualized by UV transillumination

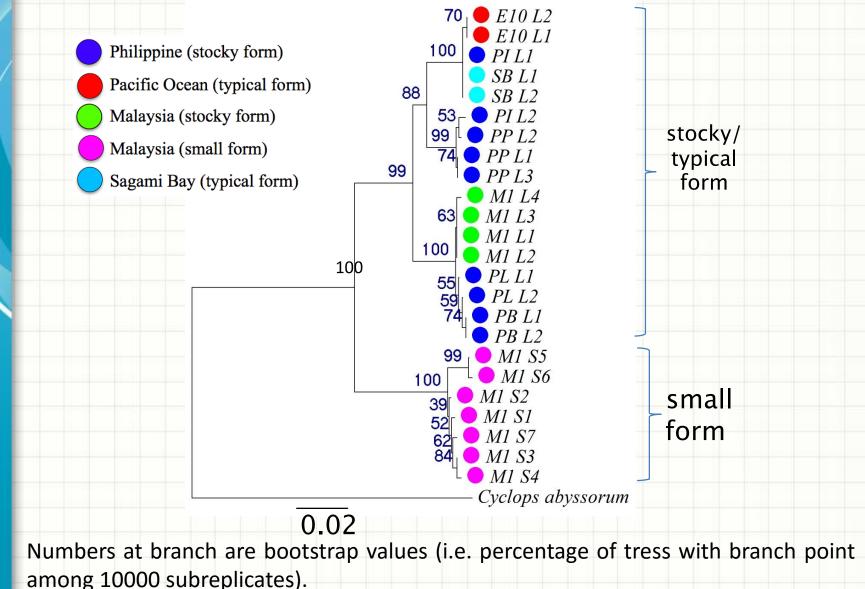

PRIMERS

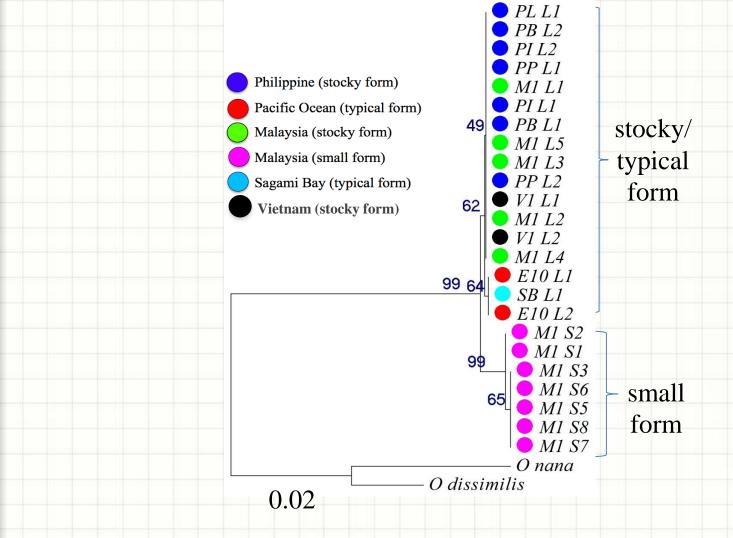
Name of primer	Source
Mitochondrial region	Machida et al., 2002
12S rRNA	
Nuclear region	Machida & Knowlton 2012
28S rRNA	

Materials and Methods


Body proportions of Oithona attenuata

Ratio of prosome length (PL)/prosome width (PW) versus total length (TL)


Body proportions of Oithona attenuata



Ratio of PL/urosome length (UL) versus TL

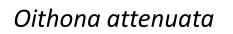
Gene trees for mitochondrial 12s rRNA showing proportional differences between individual females of the large and small forms of *O. attenuata* from Southeast Asia and neighboring waters

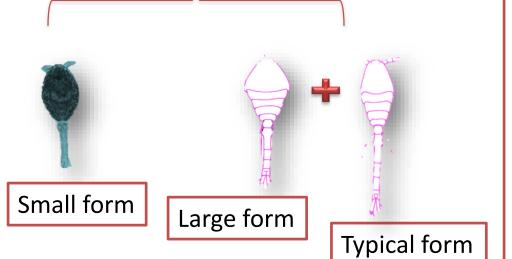
Gene trees for nuclear 28s rRNA showing proportional differences between individual females of the large and small forms of *O. attenuata* from Southeast Asia and neighboring waters

Numbers at branch are bootstrap values (i.e. percentage of tress with branch point among 10000 subreplicates).

Pairwise % diference for 12s rRNA. % values in bold indicate

pair-wise comparisons between forms


	1 2	3	; 4	5	6	7	8	9	10 11	12 13	14 15	5 16	17 1	8 19	20 2	21 22	23 2	24
1 C. abysson	um																	
2 M1_S5	44.0								[
3 M1_S6	44.0 0.	0							sma	ll for	m vs	s ste	ocky	v fo	rm=	15-	19%	
4 M1_S7	43.0 0.	2 0.	2										•	•			1 / /0	
5 M1_S3	43.0 0.	2 0.	2 0.	1					sma	ll vs.	typi	cal	Iorr	n=1	/-15	9%		
6 M1_S4	44.0 0.	3 0.	3 0.	1 0.0														
7 M1 S1	44.0 0.	2 0.	2 0.	1 0.1	0.1													
8 M1_S2	44.0 0.	2 0.	2 0.	1 0.1	0.1	0.0												
9 M1_L4	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	1										
10 PB_L1	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	0.1		sto	cky t	forn	n vs	. typ	oical	1		
11 PB_L2	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	0.1	0.1		5							
12 PL_L2	44.0 17	.0 17	.0 16	0 16.0	17.0	16.0	16.0	0.1	0.1 0.0	101	m–J	-070	,					
13 PL_L1	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	0.1	0.1 0.1 0	0.0								
14 M1_L1	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	15.0	0.1	0.1 0.1 0	0.1 0.0								
15 M1_L2	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	15.0	0.1	0.1 0.1 0	0.1 0.0	0.0							
16 M1_L3	44.0 17	.0 17	.0 16	0 16.0	16.0	16.0	15.0	0.1	0.1 0.1 0	0.1 0.0	0.0 0.0	0						
17 E10_L2	44.0 19	.0 19	.0 18	0 18.0	18.0	17.0	17.0	8.0	8.0 8.0	8.0 8.0	8.0 8.	0 8.0						
18 E10_L1	44.0 19	.0 19	.0 18	0 18.0	18.0	17.0	17.0	8.0	8.0 8.0 8	8.0 8.0	8.0 8.	0 8.0	0.0					
19 SB_L1	44.0 19	.0 19	.0 18	0 18.0	18.0	17.0	17.0	8.0	8.0 8.0 8	8.0 8.0	7.0 7.0	0 7.0	0.0 0	.0				
20 PI_L1	44.0 19	.0 19	.0 18	0 18.0	18.0	17.0	17.0	8.0	8.0 8.0 8	8.0 8.0	7.0 7.0	0 7.0	0.0 0	0.0 0.				
21 SB_L2	44.0 19	.0 19	.0 18	0 18.0	18.0	17.0	17.0	8.0	8.0 8.0	8.0 8.0	7.0 7.0	0 7.0	0.0 0	0.0 0.0	0.0			
22 PI_L2	43.0 17	.0 18	.0 16	0 16.0	17.0	16.0	16.0	8.0	8.0 8.0 8	8.0 8.0	8.0 8.	0 8.0	6.06	.0 6.0	6.0 6	.0		
23 PP_L1	43.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	7.0	7.0 7.0 8	8.0 7.0	7.0 7.0	0 7.0	6.0 6	.0 5.0	6.0 5	.0 0.1		
24 PP_L3	43.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	7.0	7.0 7.0 8	8.0 7.0	7.0 7.0	0 7.0	6.0 6	.0 5.0	5.0 5	.0 0.1	0.0	
25 PP L2	43.0 17	.0 17	.0 16	0 16.0	16.0	16.0	16.0	8.0	8.0 8.0 8	8.0 8.0	7.0 7.0	0 7.0	6.0 6	.0 6.0	5.0 6	. 0 0.1	0.0 0	0


Pairwise % diference for 28s rRNA. % values in bold indicate

pair-wise comparisons between forms

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	1	0. nana																										
	2	0. dissimilis	14.0																									
	3	M1_S1	29.0	26.0							m	a11 f	ort	$\mathbf{n} \mathbf{v}$.	stoc	- by	fo	rm	-2								
	4	M1_S2	29.0	26.0	0.3							111 1	UII	11 V	b. 3	siot	лу	10	1111.	-2-	-							
	5	M1_S3	29.0	26.0	0.3	0.3				13	3%																	
	6	M1_S5	29.0	26.0	0.3	0.3	0.0																					
	7	M1_S6	29.0	26.0	0.3	0.3	0.0	0.0																				
	8	M1_S7	29.0	26.0	0.3	0.3	0.0	0.0	0.0						Γ													٦
	9	M1_S8	29.0	26.0	0.3	0.3	0.0	0.0	0.0	0.0			•			typ	nic	al f	orr	n v	/S.	sm	all	fo	rm	=39	%	
	10	PB_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0]																
	11	PI_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0				sto	OCK	y I	orn	n v	S. 1	yp	1ca	II I	orn	n n	ot	
	12	P_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0			sig	mi	ica	nt									
	13	M1_L5	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0		~-2	,											
	14	PL_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0													
	15	M1_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	9.0	0.0												
	16	M1_L3	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0											
	17	M1_L4	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		- 1								
	18	M1_L2	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0									
	19	V1_L1	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
	20	PB_L2	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
	21	PP_L2	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	<i>5</i> .0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
	22	PI_L2	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
	23	V1_L2	29.0	25.0	2.0	2.0	2.0	2.0	2.0	2.0	29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			_	
	24	SB_L1	28.0	25.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		1	
	25	E10_L2	28.0	25.0		2.0	3.0	3.0	3.0	3.0	3.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
_	26	E10_L1	28.0	25.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0	

Summary

- Reproductive isolation of O.
 attenuata = speciation with salinity gradients?
- stocky-coastal vs typicaloceanic
 - ✓ elusive
 - necessitating wider sample coverage
 - ✓ copepods with highest environmental
 - adaptability = little
 - genetic differentiation
- cryptic species in other inlet– oceanic species
 - ✓ O. nana & O. simplex,
 - ✓ integrative morphologicaland molecular analyses

Thank You! Tusen Takk! Maraming Salamat! ありがとうございました! Merci!

AORI

JSPS 日本学術振興会 Japan Society for the Promotion of Science

Atmosphere and Ocean Research Institute The University of Tokyo

North Pacific Marine Science Organization (**PICES**)