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Undersampled and underrated?
Observing the role of marine snow in aquatic ecosystems
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Motivation

Estimates of carbon flux to the deep oceans are essential for our understanding of
global carbon budgets
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* Passive: Sinking marine aggregates of biogenic origin, known as marine snow, are
considered to play a major role in the oceans particle flux (,biological pump’)
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e Active: Zooplankton mediated processes include feeding on primary production
through fecal pellets, disruption of aggregates and vertical migration (daily,
ontogenetic and annual overwintering)
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* Aggregates may represent a concentrated food source for zooplankton

* In-situ observations are still rare due to traditional sampling methods
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Elucidate processes affecting the carbon flux in different marine
ecosystems by using a non-invasive optical approach

- J

=z
o
=
—
>
w
@
)




UH
Sampling: Video Plankton Recorder (VPRII) o
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 Towed ,underwater microscope”
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* Equipped with high resolution camera and
CTD, turbidity-, fluorescence-, and light
Sensors
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* Images (25 fps) combined with sensor data
sent in real-time on board
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. Calibrated image volume =41.2 ml|
/\ Field of view = 24 x 24 mm

Fiber-optic tow cable

Strobe

Environmental &
Flight-control sensors
High magnification camera

Imaged Volume

* Undulating between surface & bottom
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Sampling: Digital autonomous VPR (DAVPR)
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Color camera, 15 fps, 1028x1024 pix
Magnification setting: 24x24 mm field of view
Calibrated image volume: 44.72 ml

1200 m depth rating

Battery pack: 2 hours of continuous operation
Hydrographic sensor: CTD
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Data processing and classification

* ,Rois” were extracted from all captured image frames / building Training set
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* Dual classification method (SVM & Neural network) with automatic
correction (Hu & Davis 2006)
* Manually corrected afterwards
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Confusion matrix (machine vs. human counts)

blurry | calanus | chaetognath |diatom snow | jelly |krill fecal string|appendicularian| marine snow | other copepods | phaeocystis |phaeocystis snow| radiolaria| others

blurry 380 1] 0 0 3 0 0 6 1 1] 0 3 0

calanus 36 289 15 0 6 0 0 0 2 0 0 0 0
chaetognath 0 31 233 0 5 1 6 0 0 0 0 0 2 E
diatom snow 0 0 1 399 2 0 0 0 0 0 3 0 0 %
jelly 1 0 2 0 172 0 8 6 1 0 0 0 48 E

krill fecal string 0 0 4 0 0 281 2 21 5 0 0 0 0

appendicularian 0 1 3 0 9 7 244 4 1 0 3 0 0

marine snow 0 0 0 0 2 8 2 189 14 0 0 0 2

other copepods 1 10 0 0 2 1 6 5 291 1] 0 0 6

phaeocystis 0 0 0 0 2 0 1 0 0 309 17 0 0

phaeocystis snow| 0 0 1 0 0 0 6 0 0 3 244 0 1

radiolaria (1] 0 1] 0 4 1 1 0 1 0 0 363 2

others 24 111 183 43 235 143 166 211 126 130 175 76 386
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Baltic Sea: Hydrography
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Along-track distribution: Marine snow
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Marine Snow (# per liter)
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: 15.85
15.9

Longitude

* Pronounced thin layer of aggregates at halocline
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Along-track distribution: Copepods
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Along-track distribution: Copepods i
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Along-track distribution: Copepods
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15.85

15.8

Latitude Longitude

* Real datapoints and not interpolation artifacts
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Vertical distribution pattern

Moller et al. (MEPS 2012)
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* Pronounced thin layer of marine snow
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e High copepod concentrations within this layer




Spatial overlap & trophic interaction

Williamson & Stoeckl (1990)
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density of marine snow aggregates at a given
depth.
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g * Images of copepods attached to aggregates
0.5 1
* Antenna in feeding position
0.0

e Marine snow as a food source in the Baltic:
undersampled & underrated?
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North Atlantic: Deep Convection Cruise

Deep convection cruise with RV ,Meteor’‘ in 2012 (19.03 — 02.05.) S

Key objectives :
* Identify the vertical distribution .
of plankton & particles during 5

the transition from winter
convection to spring bloom I 10 5 % 4 P o ,
conditions

63 500 m

* Observe the diapause depth of
Calanus finmarchicus in relation
to deep convection

1000 m

1500 m
62 °
2000 m

2500 m =2
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* Resolve potential individual o1 so0m S

wn

interactions between &
zooplankton consumers and 60°

sinking particles
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Baltic Sea Atlantic Arctic North Sea Synopsis
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Classification and marine snow categories o
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Calanus Krill fecal string
>
Phaeocystis J :’t % .
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,regular” Marine snow =
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Diatom snow Phaeocystis snow 2,




lcelandic Basin: Marine snow combined
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Figure 11: Abundance of marine snow for 4 legs at Station 1 of the M87 cruise. The
bars show the abundance in 50 m bins, the black dashed line the numerically
calculated convection depth and the red dashed line the weighted mean depth.
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Krill fecal string - vertical distribution

Visit 1
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Depth (m)
Depth (m)
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| 1 1 |
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Time (ms of day) Time (ms of day)
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Phaeocystis snow - vertical distribution
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No Phaeo-snow during first visit
Increase — bloom during second visit
Accumulation at surface

Depth (m)

No sinking out - Grazing?
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Diatom snow - vertical distribution
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No diatom snow during first visit
Low abundant during visit 2
Increase with time / visits

Depth (m)

Diatom bloom during last visit
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Sunken out or grazed away?
Visit 2
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Time (ms of day)
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Regular snow - vertical distribution

Depth (m)

No marine snow during first visit

Increase with time / visits

Visit 3
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Calanus finmarchicus vertical distribution
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Marine snow utilization

Interaction between zooplankton and sinking particles
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* App. 85% of Microsetella spp. was
found to be attached to
aggregates.

* Exclusively on Phaeocystis snow &
colonies
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* Oncea spp. was found exclusively
on marine snow of diatom origin
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Quantify particle flux & utilization:

High export via small particles before the onset of the North

[oe)
Release Q
e ——— B Atlantic spring bloom =3
' . . . v
e _L” Giering et al. (submitted) o
Aperture and , _ - e _ o - 11 Line
cap (closed) - -~ —
/ w ;
= 9 ~ =
0 ' —
g mey, § 2 E v 2
o ma!li?’n : E v 2 o
;‘ o = - fa
pt 5
= 5
it SN : = S 5
sepclion _ ﬂ % - ’."
Ba5§(BL) (4]
5:;;1;; eag;i } Sinking matter | g — % -
] ho 8 o
g : T & = m Lo — T T I
0.0 0.2 04 06 08 1.0 0 1 - 9 16 25
Weight for R ESD (mm) from VPR Particle concentration from VPR (# L b)
Width: 28 cm Z
: S
ot |:>E' ‘Smkingspeeld(md") '_3"‘
alcite E_ r 1 1 w
3 * Calculate sinking speeds for different aggregate types & sizes [
& BSi»g
s . % * Determine aggregate utilization rates of zooplankton
8 &I; O\ \_\\ W\ .\\\ .\\\\
H NN ‘ Nutrient recycling vs. sinking out of particles -
e~ 2 5‘ 10’ 20I 50‘ 100 200 500 O
C — ©

Apparent particle radius (um)




Polar night cruise
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Lunar Vertical Migration patterns

Date (day / month)

Extracted data for
LVM-day analysis
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07/12 " J " J 1 J i
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Last et al. 2016
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Baltic Sea Atlantic i North Sea Synopsis
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VPR Il on TRIAXUS high speed tow-body

o]
Q
=
(@]
n
®
Q

13Uy

Scientific equipment connected via fibre optic cable (2000m)

« Seabird Fast Cat SBE 49, 16 Hz, pumped)

* TRIOS PAR sensor

* Aanderaa Oxygen Optode 4330 F (Response Time (63%) < 8 s)

* Simrad EK60 Hydroacoustic System (200 & 333 kHz, split beam)

* ODIM LOPC Laser Optical Plankton Counter (100 um to 3.5 cm)

* Turner C6 Cyclops, pumped, sensors: Chl-a, Phycocyanin, Phycoerythrin, Turbidity
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Horizontal distribution

Copepods (Ind L)
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* Mirror-inverted distribution pattern of copepods and marine snow
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Baltic Sea Atlantic Arctic North Sea Synopsis
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Conclusions:

Marine snow is potentially an important food source for zooplankton
in many different marine ecosystems

Different copepod species have specific preferences depending on the
biogenic origin of aggregates

Different marine snow categories show different particle characteristic
vertical distribution patterns depending on their specific properties

Vertical heterogeneity and peak concentrations averaged out in traditional
sampling scales

Marine snow is a potential ,,wake-up“ trigger for diapausing Calanus
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Optical particle trap: Quantification!

4 MarGate underwater expg_rimental field
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SCOR Working group ,, TOMCAT*
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Translation of Optical Measurements into particle Content, Aggregation & Transfer %
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Sinking particles transport organic carbon to the deep sea, where they form the base of life. The 3
magnitude of particle export and the rate at which particles are consumed determine carbon

>

5

optical measurements to allow the collection of large data sets describing both frequencies and types of &
sinking particles. These can be used from ships or installed on remote platforms, promising greater
spatial and temporal coverage. Yet, whilst technologies to image particles have advanced greatly during
the last two decades, techniques to analyze the often immense data sets have not. One short-coming is

the translation of optical particle properties (e.g. the image) into particle characteristics such as carbon z

content and sinking speed. Moreover, different devices often measure different optical properties, &
leading to difficulties in comparing results. This working group aims to bring together experts in
observation, experimentation, theoretical modelling, and data analyses to systematically improve the
process of converting in-situ particle measurements to global export estimates. Final outcomes will

include publications detailing intermediate steps and a framework outlining the most efficient way of 5

converting large volumes of particle measurements into export estimates. The output of this working g

Q

group should have high impact on future ocean research by enabling efficient use of the rapidly
developing field of optical sensors.
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