Echosounders: Non-intrusive observations of the pelagic

Stein Kaartvedt Department of Biosciences University of Oslo

R.E.Pieper, D.V.Holliday and G.S.Kleppel

LOG BIOVOLUME (mm3.m-3)

J Plankton Res

Functioning of an echo sounder

An echosounder transmits sound pulses and measures the time before an echo returns (gives range). The strenght of the echo is a proxy for biomass (volume backscatter) or size (target strength)

Echograms display range vs time, colors refer to strength of echoes (Red Sea)

Individuals can also be tracked accross the acoustic beam

Use of stationary, submerged echosounders

- Why echosounders?
 - "See" at long range, non-intrusive, provide information on abundance, distribution, size and behavior
- Why stationary?
 - Many successive echoes from same organism facilitates behavioral studies
- Why submerged?
 - High resolution in deep water

Methodological approach

Information on environment

2005-12-26

Zooplankton: ehosounders provide information on predators

Fig. 1. Daytime echograms (38 kHz) from (A) Masfjorden and (B) Lurefjorden 06 and 07 November 2004, applying a Sv-threshold of -75 dB.

Mortality of overwintering *Calanus spp* Masfjorden (A): mesopelagic fish Lurefjorden (B):Jellyfish, abundant carnivorous invertebrates

predators in Lurefjorden; make 19-24 Oct sence when including acoustics

Bagøien et al. (2001) Limnol Oceanogr

11 Dec

4-10 Jan

10-15 Feb

Lurefjorden

- 440 m deep, very enclosed
- The jellyfish *Periphylla periphylla* dominates the mesopelagic fauna (also other invertebrate predators very abundant)
- Mesopelagic fish are lacking

Trawling for 2 minutes

DVM of Periphylla revealed from trawling and ROV

Kaartvedt et al. (2011) Limnol Oceanogr

Yongbluth & Båmstedt (2001) Hydrobiologia Detection depends on settings (-75 dB vs -100 dB threshold at 38 kHz). Lower threshold reveals mixture of synchronous and asynchronous migration in jellyfish

Kaartvedt et al. (2011) Limnol Oceanogr

- The simplest organism in the animal kingdom displays diverse DVM-behavior (what about other plankton?)
- But there is more:

Echograms from hull mounted transducer left; submerged echosounder right

Kaartvedt et al. (2015) Sci Rep

Further documentation of group formation from deployed echosounder and ROV

Krill swimming speed in deep water (> 100 m) day and night

In situ swimming path of krill

Horizontal swimming speed day (green) and night (red) «2» water renewal = more oxygen (120 kHz)

Klevjer & Kaartvedt (2011) Limnol Oceanogr

Diel vertical swimming speed «What goes up, most come down» (Isaac Newton)

Average (n=18285) tracks at ~130-120 m for 6 days

Vestheim et al. (2014) J Plankton Res

Acoustic measurements of krill DVM and fecal pellet production (200 kHz)

- Krill DVM
- Avoidance hypoxy (ca 7% saturation)
- Krill feeding pattern
- Time to fill guts
- Gut evacuation
- Pellet sinking rate
- (copepods in hypoxic waters)

Røstad & Kaartvedt (2013) Limnol Oceanogr

Pellet sinking speed (400-800 m day⁻¹)

Fig. 13. Linear correlation between sinking speed and TS. Each point is average of all speeds for each dB of TS. (A) represents all particles tracked from 2 m to 40 m from the transducer and (B) particles tracked 2–5 m from the transducer.

Mesopelagic fish (200-1000 m)

feete :

Why focus on mesopelagic fish as plankton ecologist?

- Ref mortality overwintering *Calanus*
- Hernández-León et al. (2001, 2008, 2010): Mortality of zooplankton related to moon cycle, multiply at full moon
- Session on macroplankton
- Use of ADCPs remember: high frequency echosounders still see fish
- Global abundance based on net tows 1 billion tonne
- Acoustics 10 billion tonne (for comparison global yearly fisheries 100 million tonne)
- How realistic are abundance estimates based on nets? (And acoustics?)

Avoidance of trawl and predators

Deployment of atonomous echosounder in the Red Sea

Example diel echogram Red Sea (38 kHz)

Both for abundance estimate and e.g. behavioral studies we want to know the identities of the acoustic targets (Echogram from hull-mounted 38 kHz)

Echogram from upwardlooking echsounder deployed on the bottom (38 kHz)

Identity of acoustic targets:

Fish!

(Though we get very low catches in microneckton trawls)

NO

10:37

¥

0

144

Acknowledgement

Thor A. Klevjer

Anders Røstad

