Report of the Working Group on Widely Distributed Stocks (WGWIDE)

30 August – 5 September 2017
ICES Headquarters, Copenhagen, Denmark
International Council for the Exploration of the Sea
Conseil International pour l’Exploration de la Mer

H. C. Andersens Boulevard 44–46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33 38 67 00
Telefax (+45) 33 93 42 15
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:

For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

© 2017 International Council for the Exploration of the Sea
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Terms of References (ToRs)</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>The WG work 2017 in relation to the ToRs</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>List of participants</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Overview of stocks within the WG</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Quality and Adequacy of fishery and sampling data</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Sampling Data from Commercial Fishery</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Catch Data</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Discards</td>
<td>5</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Age-reading</td>
<td>6</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Biological Data</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Quality Control and Data Archiving</td>
<td>8</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Current methods of compiling fisheries assessment data</td>
<td>8</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Quality of the Input data</td>
<td>9</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Stock data problems relevant to data collections</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Comment on update and benchmark assessments</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Latest benchmark results</td>
<td>13</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Benchmark of North Sea horse mackerel (WKWIDE)</td>
<td>13</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Benchmark of western horse mackerel (WKWIDE)</td>
<td>13</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Inter-Benchmark Protocol of NEA mackerel (WKWIDE)</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Planning future benchmarks</td>
<td>15</td>
</tr>
<tr>
<td>1.9</td>
<td>Special Requests to ICES regarding stocks within WG WIDE</td>
<td>15</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Long-term management strategy for blue whiting in the northeast Atlantic agreed by the European Union, the Faroe Islands, Iceland and Norway</td>
<td>16</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Request to ICES concerning long-term management strategy for mackerel in the Northeast Atlantic</td>
<td>17</td>
</tr>
<tr>
<td>1.10</td>
<td>General stock trends for widely distributed and migratory pelagic fish species</td>
<td>18</td>
</tr>
<tr>
<td>1.11</td>
<td>Ecosystem considerations for widely distributed and migratory pelagic fish species</td>
<td>20</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Climate variability and climate change</td>
<td>20</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Circulation pattern</td>
<td>21</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Temperature</td>
<td>21</td>
</tr>
<tr>
<td>1.11.4</td>
<td>Phytoplankton</td>
<td>21</td>
</tr>
<tr>
<td>1.11.5</td>
<td>Zooplankton</td>
<td>22</td>
</tr>
<tr>
<td>1.11.6</td>
<td>Species interactions</td>
<td>22</td>
</tr>
<tr>
<td>1.12</td>
<td>Future Research and Development Priorities</td>
<td>23</td>
</tr>
<tr>
<td>1.12.1</td>
<td>NEA Mackerel</td>
<td>24</td>
</tr>
<tr>
<td>1.12.2</td>
<td>Blue Whiting</td>
<td>24</td>
</tr>
</tbody>
</table>
1.12.3 NSS Herring ... 25
1.12.4 Western horse mackerel ... 25
1.12.5 North Sea horse mackerel ... 25
1.12.6 Boarfish ... 26
1.13 References .. 26

2 Blue whiting (Micromesistius poutassou) in subareas 27.1–9, 12, and 14 (Northeast Atlantic) .. 30
 2.1 ICES advice in 2016 .. 30
 2.2 The fishery in 2016 ... 30
 2.3 Input to the assessment ... 30
 2.3.1 Officially reported catch data 30
 2.3.2 Preliminary 2017 catch data (Quarters 1 and 2) 32
 2.3.3 Catch at age .. 33
 2.3.4 Weight at age .. 33
 2.3.5 Maturity and natural mortality 33
 2.3.6 Information from the fishing industry 33
 2.3.7 Fisheries independent data .. 34
 2.4 Stock assessment .. 35
 2.4.1 SAM model ... 35
 2.4.2 Alternative model runs .. 36
 2.5 Final assessment .. 36
 2.6 State of the Stock ... 36
 2.7 Biological reference points .. 36
 2.8 Short term forecast .. 37
 2.8.1 Recruitment estimates ... 37
 2.8.2 Short term forecast ... 38
 2.9 Comparison with previous assessment and forecast 39
 2.10 Quality considerations .. 39
 2.11 Management considerations .. 39
 2.12 Ecosystem considerations ... 39
 2.13 Regulations and their effects .. 39
 2.13.1 Management plans and evaluations 40
 2.14 References ... 41

3 Northeast Atlantic boarfish (Capros aper) 90
 3.1 The fishery ... 90
 3.1.1 Advice and management applicable from 2011 to 2017 ... 90
 3.1.2 The fishery in recent years .. 92
 3.1.3 The fishery in 2016 ... 92
 3.1.4 Regulations and their effects 93
 3.1.5 Changes in fishing technology and fishing patterns 93
 3.1.6 Discards ... 93
 3.2 Biological composition of the catch 93
4.4.9 Information from the fishing industry .. 162
4.5 Stock assessment .. 162
4.5.1 XSAM final assessment 2017 .. 162
4.5.2 Exploratory assessments ... 165
4.6 NSSH reference points ... 166
4.6.1 PA reference points ... 166
4.6.2 MSY reference points .. 166
4.6.3 Management reference points ... 167
4.7 State of the stock .. 167
4.8 NSSH Catch predictions for 2018 ... 167
4.8.1 Input data for the forecast ... 167
4.8.2 Results of the forecast ... 168
4.9 Comparison with previous assessment 168
4.10 Management plans and evaluations .. 168
4.11 Management considerations .. 169
4.12 Ecosystem considerations ... 170
4.13 Changes in fishing patterns .. 170
4.14 Recommendation ... 170
4.15 References ... 171

5 Horse Mackerel ... 225
5.1 Fisheries in 2016 .. 225
5.2 Stock Units .. 225
5.3 WG Catch Estimates ... 226
5.4 Allocation of Catches to Stocks .. 227
5.5 Estimates of discards ... 227
5.6 Trachurus Species Mixing .. 227
5.7 Length Distribution by Fleet and by Country: 228
5.8 Comparing trends between areas and stocks 228
5.9 Quality and Adequacy of fishery and sampling data 229
5.10 References ... 230

6 North Sea Horse Mackerel: Divisions 27.4.a (Q1 and Q2), 27.3.a (excluding Western Skagerrak Q3 and Q4), 27.4.b, 27.4.c and 27.7.d 260
6.1 ICES Advice Applicable to 2017 .. 260
6.2 Fishery of North Sea horse mackerel stock 260
6.3 Biological Data .. 261
6.3.1 Catch in Numbers at Age ... 261
6.3.2 Mean weight at age and mean length at age 262
6.3.3 Maturity at age ... 262
6.3.4 Natural mortality ... 263
6.4 Data Exploration ... 263
6.4.1 Catch curves ... 263
6.4.2 Assessment models and alternative methods to estimate the biomass
6.4.3 Survey data
6.4.4 Summary of index trends
6.4.5 Data Limited Stock methods and MSY proxy reference points
6.4.6 Ongoing work

6.5 Basis for 2017 Advice. ICES DLS approach
6.6 Management considerations
6.7 References

7 Western Horse Mackerel – in Subarea 8 and divisions 2.a, 3.a (Western Part), 4.a, 5.b, 6.a, 7.a–c and 7.e–k

7.1 ICES advice applicable to 2016 and 2017
7.1.1 The fishery in 2016
7.1.2 Estimates of discards
7.1.3 Stock description and management units

7.2 Scientific data
7.2.1 Egg survey estimates
7.2.2 Other surveys for western horse mackerel
7.2.3 Effort and catch per unit effort
7.2.4 Catch in numbers
7.2.5 Mean length at age and mean weight at age
7.2.6 Maturity ogive
7.2.7 Natural mortality
7.2.8 Fecundity data
7.2.9 Information from the fishing industry

The Irish fishing industry reported good horse mackerel catches west of Scotland (Division 6.a) during January 2016 and again in January 2017. Catch rates of horse mackerel by the pelagic freezer-trawlers in divisions 7.b, 7.c and 7.h were substantially lower in 2016 and 2017 compared with previous years.

7.2.10 Data exploration
7.2.11 Assessment model, diagnostics

7.3 State of the Stock
7.3.1 Stock assessment

7.4 Short-term forecast

7.5 Uncertainties in the assessment and forecast

7.6 Comparison with previous assessment and forecast

7.7 Management Options
8 Northeast Atlantic Mackerel

8.1 ICES Advice and International Management Applicable to 2016

8.2 The Fishery

8.2.1 Fleet Composition in 2016

8.2.2 Fleet Behaviour in 2016

8.2.3 Recent Changes in Fishing Technology and Fishing Patterns

8.2.4 Regulations and their Effects

8.3 Quality and Adequacy of sampling Data from Commercial Fishery

8.4 Catch Data

8.4.1 ICES Catch Estimates

8.4.2 Distribution of Catches

8.4.3 Catch-at-Age

8.5 Biological Data

8.5.1 Length Composition of Catch

8.5.2 Weights at Age in the Catch and Stock

8.5.3 Natural Mortality and Maturity Ogive

8.6 Fishery Independent Data

8.6.1 International Mackerel Egg Survey

8.6.2 Demersal trawl surveys (Recruitment Index)

8.6.3 Ecosystem surveys in the Nordic Seas in July-August (INESSNS)

8.6.4 Tag Recapture data

8.6.5 Other surveys

8.7 Stock Assessment

8.7.1 Update assessment in 2017

8.7.2 Model diagnostics

8.7.3 State of the Stock

8.7.4 Exploratory run to assess the effect of the revision of the RFID tagging recapture data

8.7.5 Quality of the assessment

8.8 Short term forecast

8.8.1 Intermediate year catch estimation

8.8.2 Initial abundances at age
Annex 06 Working Documents ... 533
Executive Summary

The Working Group (WG) on Widel y Distributed Stocks (WGWIDE) met at ICES Headquarters in Copenhagen, Denmark, from 30 August to 5th September 2017. The meeting was attended by 35 delegates from the Netherlands, Ireland, Spain, Norway, Portugal, Iceland, United Kingdom (England and Scotland), Faroe Islands, Denmark, Greenland, Russia and Germany. Three other fisheries scientists participated by correspondence. The WG reports on the status and considerations for management of Northeast-Atlantic Mackerel, Blue Whiting, Western and North Sea Horse Mackerel, Northeast-Atlantic Boarfish, Norwegian Spring Spawning Herring, Striped Red Mullet (Subareas 6, 8 and Divisions 7.a-c, e-k and 9.a), and Red Gurnard (Subareas 3, 4, 5, 6, 7, and 8) stocks.

A request to WGWIDE regarding the management strategy of NEA mackerel was addressed at WKMACMSE.

Northeast-Atlantic (NEA) Mackerel. This species is widely distributed throughout the ICES area and currently supports one of the most valuable European fisheries. The stock was benchmarked in January 2017 where number of changes were accepted for the stock assessment. The spawning-stock biomass (SSB) is estimated to have increased in the late 2000s and has remained above MSY since 2009. The fishing mortality (F) has declined from high levels in the mid-2000s but remains above F_MSY. There has been a succession of large year classes since the early 2000s. The 2017 assessment shows a downward revision in the estimates of SSB in recent years and decrease in SSB from 2016 to 2017 resulting in lower advice for 2018 (550 948 tonnes) than for 2017.

Blue Whiting. This pelagic gadoid is widely distributed in the eastern part of the North Atlantic. The assessment this year followed the Stock Annex based the conclusions from the Inter-Benchmark Protocol of Blue Whiting (IBPBLW 2016). The forecast used the suggestion from the ADG 2016 to finally raise the preliminary catches to the best estimate of catches in 2017, after the first half-year catches are raised to annual catches based on the historic exploitation pattern.

Western Horse Mackerel. The stock was benchmarked in January 2017 and the WG performed an analytical assessment (Stock Synthesis integrated stock assessment model) accordingly. A new egg survey was carried out in 2016 in the western and southern spawning areas and the results were used in the assessment. Besides, a recruitment index from the IBTS survey and a biomass index from the PELACUS acoustic survey were included. Year classes since 2001 have been weak with 2006, 2011 and 2013 among the weakest in the time series. 2008 and 2012 year classes are fairly good, and the 2015-2016 values are the highest observed since 2008 (higher than the geometric mean estimated over the years 1983-2016). Fishing mortality has been increasing since 2007 as a result of increasing catches and decreasing biomass as the 2001 year-class was reduced. Since 2012 has been decreasing, dropping to low values in 2015-2016 due to lower catches and a reduced proportion of fraction of the adult population in the exploited stock and it is currently below F_MSY. SSB in 2016 is estimated as the lowest in the time-series, but above the Blim reference point agreed for the stock.

North Sea Horse Mackerel. After being benchmarked in January 2017, the CGFS and NS-IBTS survey indices were modelled with a zero inflated model to produce an combined index. The observed trend in the last years suggest that the stock is still at low levels in comparison with values in the early time series, but seems to indicate and increasing pattern in the last years with some signs of higher recruitments. The result
of Length Based Methods to estimate proxy MSY reference points for the North Sea Horse Mackerel indicate that fishing mortality is currently slightly above Fmsy.

Northeast Atlantic Boarfish. This is a small, pelagic, planktivorous, shoaling species, found at depths of 0 to 600 m. The species is widely distributed from Norway to Senegal. The fishery for boarfish in the NEA is a relatively new one, and the catches of boarfish initially showed a sharp increase in the early 2000s, decreasing thereafter. There is currently no accepted analytical assessment for this stock although results from an exploratory assessment model are used as indicators for stock development. Bottom-trawl survey indices are considered indicative of trends in their respective areas. Since 2012 there has been a sharp decline in the estimated total stock biomass of boarfish in the North East Atlantic.

Norwegian Spring Spawning Herring. This is one of the largest herring stocks in the world. It is highly migratory and distributed throughout large parts of the NE Atlantic. This stock was benchmarked in 2016 (WKPELA). The assessment model introduced in the benchmark (XSAM), incorporates uncertainty in the input data, and has been used to provide advice after the benchmark. This year’s assessment is the second one using the XSAM model and the resulting SSB time series is in line with the SSB time series from the 2016 assessment.

Striped Red Mullet in North Sea, Bay of Biscay, Southern Celtic Seas, Atlantic Iberian Waters. It is a predominantly benthic species distributed from southern Norway and northern Scotland to the Northern part of West Africa, in the Mediterranean Basin, and in the Black Sea. There is limited information to evaluate stock trends. The landings have shown an increase between the mid-1990s and 2007 but have declined since then and are presently above the historical average. This is a category 5 stock without information on abundance or exploitation, and the evaluation is based on commercial landings. ICES advises that when the precautionary approach is applied, landings should be no more than 1600 tonnes in each of the years 2018, 2019, and 2020.

Northeast-Atlantic Red Gurnard. This species is widely distributed in the North-east Atlantic from South Norway and North of the British Isles to Mauritania on grounds between 20 and 250 m. There is limited information to evaluate the stock trends. Landings information is of limited usefulness due to several countries reporting landings of “mixed gurnards”. This is a category 6 stock for which there is no indication of where fishing mortality is relative to proxies and no stock indicators, and the evaluation is based on commercial landings. ICES advises that when the precautionary approach is applied, landings should be no more than 3618 tonnes in each of the years 2018 and 2019.