Amoebic gill disease (AGD) of farmed Atlantic salmon (*Salmo salar* L.)

Neil M. Ruane and Simon R. M. Jones
International Council for the Exploration of the Sea
Conseil International pour l’Exploration de la Mer

H.C. Andersens Boulevard 44–46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33 38 67 00
Telefax (+45) 33 93 42 15
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:

Series Editor: Stephen Feist. Prepared under the auspices of the ICES Working Group on Pathology and Diseases of Marine Organisms.

For permission to reproduce material from this publication, please apply to the General Secretary.

ISSN 0109–2510

© 2013 International Council for the Exploration of the Sea
Amoebic gill disease (AGD) of farmed Atlantic salmon (*Salmo salar* L.)

Neil M. Ruane and Simon R. M. Jones

Susceptible species

Amoebic Gill Disease (AGD) primarily affects salmonids and was first described in marine reared coho salmon (*S. kisutch*) in Washington and California, USA (Kent *et al.*, 1988) and in Atlantic salmon (*Salmo salar*) and rainbow trout (*Oncorhynchus mykiss*) in Tasmania (Munday *et al.*, 1993). However, the disease has also been reported in turbot, *Psetta maxima* and sea bass *Dicentrarchus labrax* (Munday *et al.*, 2001) and has recently been described in ballan wrasse, *Labrus bergylta* (Karlsbakk *et al.*, 2013).

Disease name

Amoebic gill disease (AGD).

Aetiological agent

AGD was initially ascribed to *Neoparamoeba pemaquidensis*, based on morphological (Dyková *et al.*, 2000) and molecular characterization (Wong *et al.*, 2004). The isolation of *N. branchiphila* from AGD-affected fish (Dyková *et al.*, 2005) meant that the disease may have a mixed aetiology. However, issues still remained with the development of a reproducible experimental challenge model using both species (Morrison *et al.*, 2004; Vincent *et al.*, 2007). Using molecular techniques, Young *et al.* (2008a) showed that *N. perurans* was the aetiological agent of AGD which was subsequently confirmed by laboratory trials and fulfilment of Koch’s Postulates (Crosbie *et al.*, 2012). More recent molecular and morphological evidence supports inclusion of the aetiological agent of AGD, along with related dactylopodial amoebae, within the genus *Paramoeba*, i.e. *P. perurans* (Feehan *et al.*, 2013).

Geographical distribution

The disease has long been associated with farmed Atlantic salmon in Tasmania (Munday *et al.*, 1993) and has also been reported in farmed Atlantic salmon in Ireland (Palmer *et al.*, 1997), Scotland, Norway (Steinum *et al.*, 2008) and Chile (Bustos *et al.*, 2011). The disease has also been reported in the Mediterranean (Dyková *et al.*, 2000; Munday *et al.*, 2001) and in South Africa (Mouton *et al.*, 2013).

Associated environmental conditions

Clinical disease is most commonly reported at temperatures ranging from 12–20°C and at salinities at or above 35% (Mitchell and Rodger, 2011).

Significance

AGD has been the most significant health problem for marine salmon aquaculture in Tasmania for many years. Mortalities are generally low due to the control and treatment of the disease which adds significantly to the production costs. The commonly used treatment is a freshwater bath, often repeated every 4–6 weeks.
during summer. Therefore any expansion of the industry is constrained by access to freshwater supplies.

Gross clinical signs

AGD is characterized by multifocal lesions that appear as pale gill tissue, or white mucoid spots and plaques. The main histological feature of the disease is prominent epithelial hyperplasia resulting in a complete lamellar fusion. Large mucous cells are often situated on the surface of the hyperplastic epithelium and between the lamellae, with significant leucocyte infiltration (Mitchell and Rodger, 2011).

Control measures and legislation

The recommended treatment for AGD is a 2–3 h freshwater bath (Clark et al., 2003). Treatment with hydrogen peroxide has also shown to be effective (Adams et al., 2012) and is commonly used in Ireland and Scotland when freshwater is not available. AGD is not reportable to the OIE.

Diagnostic methods

Regular macroscopic examination of gills forms the basis of every control measure for AGD. Commercial farms utilize a field evaluation of ‘gross gill score’ describing the extent of visible white patches on a scale of 0 (clear) to 5 (heavy) to schedule treatments (Taylor et al., 2009). Macroscopic examination is often supported by gill smears and histopathology to confirm the presence of the parasite. Both conventional PCR (Young et al., 2008b) and real-time TaqMan PCR (Fringuelli et al., 2012) methods have also been described.

Key References

Histological section of Giemsa stained gill tissue from AGD affected Atlantic salmon showing hyperplastic lesions and associated amoeba. (Photo: Simon Jones, Fisheries and Oceans Canada).

Histological section of H&E stained gill tissue from Atlantic salmon with AGD showing amoeba and epithelial hyperplasia with abundant mucous cells. (Photo: Evelyn Collins, Marine Institute, Ireland).
Histological section of Atlantic salmon gill with AGD showing *Paramoeba perurans* stained by *in-situ* hybridization. (Photo: Simon Jones, Fisheries and Oceans Canada).

Author Contact Information

Neil Ruane
Marine Institute
Rinville
Oranmore
County Galway
Ireland
niel.ruane@marine.ie

Simon R.M. Jones
Fisheries & Oceans Canada
3190 Hammond Bay Road
Nanaimo
British Columbia V9T 6N7
Canada
simon.jones@dfo-mpo.gc.ca