Trends in important diseases affecting the culture of fish and molluscs in the ICES area 1998–2002

Prepared and edited by
The Working Group on Pathology and Diseases of Marine Organisms (WGPDMO)
Recommended format for purposes of citation:

For permission to reproduce material from this ICES Cooperative Research Report, apply to the General Secretary.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.1</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.2</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.3</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.4</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.5</td>
<td>1</td>
</tr>
<tr>
<td>2.1.1.1.6</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.1.7</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.2.1</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.2.2</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.2.3</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.2.4</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.2.5</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.2.6</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.2.7</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.1</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.2</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.3</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.4</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.5</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3.6</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.1</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.2</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.3</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.4</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.5</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.6</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.1.7</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.1</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.2</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.3</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.4</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.5</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.6</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.2.7</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.1</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.2</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.3</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.4</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.5</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.6</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.3.7</td>
<td>6</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3 Parasitic diseases</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1 Sea lice (Lepeophtheirus salmonis)</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.1 Description of agent</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.2 Geographical distribution</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.3 Short description of clinical signs</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.4 Indications of impact/severity at stock level</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.5 Control/preventive measures</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1.6 Temporal trends</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3.1.7 Other host species</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Other salmonids</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Viral diseases</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.1 Viral Haemorrhagic Septicaemia (VHS)</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.1.1 Description of agent</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.1.2 Geographical distribution</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.1.3 Short description of clinical signs</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.1.4 Indications of impact/severity at stock level</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.1.5 Control/preventive measures</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.1.6 Temporal trends</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.1.7 Other host species</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Bacterial diseases</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2.1 Vibriosis (Vibrio sp.)</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2.2 Furunculosis (Aeromonas salmonicida)</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Sea Bass (Dicentrarchus labrax)/ Seabream (Sparus aurata)</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Viral diseases</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1 Viral Encephalopathy and Retinopathy (Nodavirus)</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.1 Description of agent</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.2 Geographical distribution</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.3 Short description of clinical signs</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.4 Indications of impact/severity at stock level</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.5 Control/preventive measures</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.6 Temporal trends</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.1.7 Other host species</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2 Bacterial diseases</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1 Pasteurellosis (Photobacterium damsela subsp. piscicida)</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.1 Description of agent</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.2 Geographical distribution</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.3 Short description of clinical signs</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.4 Indications of impact/severity at stock level</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.5 Control/preventive measures</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.1.6 Temporal trends</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2.1.7 Other host species</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Halibut (Hippoglossus hippoglossus)</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1 Viral diseases</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1.1 Viral Encephalopathy and Retinopathy (Nodavirus)</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1.1.1 Description of agent</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1.1.2 Geographical distribution</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1.1.3 Short description of clinical signs</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1.1.4 Indications of impact/severity at stock level</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1.1.5 Control/preventive measures</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1.1.6 Temporal trends</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1.1.7 Other host species</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Turbot (Scophthalmus maximus)</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1 Bacterial diseases</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1.1 Flexibacteriosis (Flexibacter maritimus)</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1.1.1 Description of agent</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1.1.2 Geographical distribution</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1.1.3 Short description of clinical signs</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1.1.4 Indications of impact/severity at stock level</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1.1.5 Control/preventive measures</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1.1.6 Temporal trends</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1.1.7 Other host species</td>
<td>14</td>
</tr>
</tbody>
</table>
3 Diseases Of Farmed Molluscs ... 15
 3.1 European flat oyster (Ostrea edulis) .. 15
 3.1.1 Viral diseases ... 15
 3.1.1.1 Herpesvirus .. 15
 3.1.1.1.1 Description of agent ... 15
 3.1.1.1.2 Geographical distribution ... 15
 3.1.1.1.3 Short description of clinical signs .. 15
 3.1.1.1.4 Indications of impact/severity at stock level 15
 3.1.1.1.5 Control/preventive measures .. 15
 3.1.1.1.6 Temporal trends .. 15
 3.1.1.1.7 Other host species .. 15
 3.1.1.2 Parasitic diseases .. 15
 3.1.1.2.1 Bonamiosis (Bonamia sp.) ... 15
 3.1.1.2.1.1 Description of agent ... 15
 3.1.1.2.1.2 Geographical distribution .. 15
 3.1.1.2.1.3 Short description of clinical signs .. 15
 3.1.1.2.1.4 Indications of impact/severity at stock level 15
 3.1.1.2.1.5 Control/preventive measures .. 15
 3.1.1.2.1.6 Temporal trends .. 15
 3.1.1.2.1.7 Other host species ... 15
 3.1.1.2.2 Marteiliosis (Marteilia refringens) .. 17
 3.1.1.2.2.1 Description of agent ... 17
 3.1.1.2.2.2 Geographical distribution .. 17
 3.1.1.2.2.3 Short description of clinical signs .. 17
 3.1.1.2.2.4 Indications of impact/severity at stock level 17
 3.1.1.2.2.5 Control/preventive measures .. 17
 3.1.1.2.2.6 Temporal trends .. 17
 3.1.1.2.2.7 Other host species ... 17
 3.1.2 Parasitic diseases ... 15
 3.1.2.1 Bonamiosis (Bonamia sp.) ... 15
 3.1.2.1.1 Description of agent ... 15
 3.1.2.1.2 Geographical distribution ... 16
 3.1.2.1.3 Short description of clinical signs .. 16
 3.1.2.1.4 Indications of impact/severity at stock level 16
 3.1.2.1.5 Control/preventive measures .. 16
 3.1.2.1.6 Temporal trends .. 16
 3.1.2.1.7 Other host species .. 16
 3.1.2.2 Marteiliosis (Marteilia refringens) .. 17
 3.1.2.2.1 Description of agent ... 17
 3.1.2.2.2 Geographical distribution ... 17
 3.1.2.2.3 Short description of clinical signs .. 17
 3.1.2.2.4 Indications of impact/severity at stock level 17
 3.1.2.2.5 Control/preventive measures .. 17
 3.1.2.2.6 Temporal trends .. 17
 3.1.2.2.7 Other host species ... 17
 3.2 Crassostrea species .. 18
 3.2.1 Viral diseases .. 18
 3.2.1.1 Herpesvirus .. 18
 3.2.1.1.1 Description of agent ... 18
 3.2.1.1.2 Geographical distribution ... 18
 3.2.1.1.3 Short description of clinical signs .. 19
 3.2.1.1.4 Indications of impact/severity at stock level 19
 3.2.1.1.5 Control/preventive measures .. 19
 3.2.1.1.6 Temporal trends .. 19
 3.2.1.1.7 Other host species ... 19
 3.2.1.2 Parasitic diseases .. 19
 3.2.1.2.1 Haplosporidiosis (Haplosporidium nelsoni) 21
 3.2.1.2.1.1 Description of agent ... 21
 3.2.1.2.1.2 Geographical distribution .. 21
 3.2.1.2.1.3 Short description of clinical signs .. 21
 3.2.1.2.1.4 Indications of impact/severity at stock level 21
 3.2.1.2.1.5 Control/preventive measures .. 21
 3.2.1.2.1.6 Temporal trends .. 21
 3.2.1.2.1.7 Other host species ... 21
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.3</td>
<td>Haplosporidiosis (Haplosporidium costale)</td>
</tr>
<tr>
<td>3.2.2.3.1</td>
<td>Description of agent</td>
</tr>
<tr>
<td>3.2.2.3.2</td>
<td>Geographical distribution</td>
</tr>
<tr>
<td>3.2.2.3.3</td>
<td>Short description of clinical signs</td>
</tr>
<tr>
<td>3.2.2.3.4</td>
<td>Indications of impact/severity at stock level</td>
</tr>
<tr>
<td>3.2.2.3.5</td>
<td>Control/preventive measures</td>
</tr>
<tr>
<td>3.2.2.3.6</td>
<td>Temporal trends</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Mikrocytosis (Denman Island Disease) (Mikrocytos mackini)</td>
</tr>
<tr>
<td>3.2.2.4.1</td>
<td>Description of agent</td>
</tr>
<tr>
<td>3.2.2.4.2</td>
<td>Geographical distribution</td>
</tr>
<tr>
<td>3.2.2.4.3</td>
<td>Short description of clinical signs</td>
</tr>
<tr>
<td>3.2.2.4.4</td>
<td>Indications of impact/severity at stock level</td>
</tr>
<tr>
<td>3.2.2.4.5</td>
<td>Control/preventive measures</td>
</tr>
<tr>
<td>3.2.2.4.6</td>
<td>Temporal trends</td>
</tr>
<tr>
<td>3.2.2.4.7</td>
<td>Other host species</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Diseases of unknown aetiology</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Juvenile Oyster Disease (JOD)</td>
</tr>
<tr>
<td>3.2.3.1.1</td>
<td>Description of agent</td>
</tr>
<tr>
<td>3.2.3.1.2</td>
<td>Geographical distribution</td>
</tr>
<tr>
<td>3.2.3.1.3</td>
<td>Short description of clinical signs</td>
</tr>
<tr>
<td>3.2.3.1.4</td>
<td>Indications of impact/severity at stock level</td>
</tr>
<tr>
<td>3.2.3.1.5</td>
<td>Control/preventive measures</td>
</tr>
<tr>
<td>3.2.3.1.6</td>
<td>Temporal trends</td>
</tr>
<tr>
<td>3.3</td>
<td>Other mollusc species</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Parasitic diseases</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>QPX (Quahog Parasite X)</td>
</tr>
<tr>
<td>3.3.1.1.1</td>
<td>Description of agent</td>
</tr>
<tr>
<td>3.3.1.1.2</td>
<td>Geographical distribution</td>
</tr>
<tr>
<td>3.3.1.1.3</td>
<td>Short description of clinical signs</td>
</tr>
<tr>
<td>3.3.1.1.4</td>
<td>Indications of impact/severity at stock level</td>
</tr>
<tr>
<td>3.3.1.1.5</td>
<td>Control/preventive measures</td>
</tr>
<tr>
<td>3.3.1.1.6</td>
<td>Temporal trends</td>
</tr>
</tbody>
</table>
1 Introduction

One of the regular Terms of Reference of the ICES Working Group on Pathology and Diseases of Marine Organisms (WGPDMO) since its inception in 1976 is to provide and review annual national reports submitted by ICES Member Countries on the disease status of farmed fish and shellfish and to highlight new disease trends.

At its 2000 meeting, the WGPDMO emphasized that these reports could be made even more informative if presented as trends over a five-year period. This would make it possible to obtain an impression of diseases that might create problems in the near future. Such information on emerging disease problems, especially in new fish and mollusc species brought into aquaculture, is considered to be of importance for countries planning the development of production of these species.

In order to facilitate a wide dissemination, the WGPDMO agreed that such a report should be brought to the attention of ICES Member Countries, national and international organizations involved in diseases of farmed marine organisms, and interested scientists and managers by means of appropriate publications. The basic idea is to present this information in the ICES Cooperative Research Report series and on the ICES website as an internet publication which may be updated biannually.

It is the intention for the future that this report will address long-term trends in disease development in mariculture.

In order to obtain the most updated information possible, the present report provides data from the period 1998–2002 on diseases in common farmed finfish and shellfish species, which have occurred during this period. The WGPDMO has decided to present information on each disease by species and, in order to facilitate reading, each disease is presented with a short general description. Since the objective of this first report is to focus on the most significant diseases in common marine fish and mollusc species, the report does not cover all diseases or cultured species that may be of interest to ICES Member Countries and is, therefore, per se, far from being complete.

WGPDMO members that contributed to this report are J. Barja (Spain), S. Bower (Canada), D. Bruno (UK), A. Figueras (Spain), S. Ford (USA), B. Hjeltnes (Norway), S. Jones (Canada), T. Lang (Germany), S. Mellaegaard (Denmark), T. Renault (France), T. Wiklund (Finland), and M. Vigneulle (France).

2 Diseases of Farmed Fish

2.1 Atlantic salmon (Salmo salar)

2.1.1 Viral diseases

2.1.1.1 Infectious Salmon Anaemia (ISA)

2.1.1.1.1 Description of agent

ISA is caused by a virus, ISAV, which is an enveloped single-stranded RNA virus belonging to the Orthomyxoviridae family (Falk et al., 1997; Krossøy et al., 1999; Mjaaland et al., 1997). The virus is pleomorphic, with a diameter ranging from 100 nm to 140 nm. The genome consists of eight segments and the virus contains four major structural polypeptides.

2.1.1.1.2 Geographical distribution

ISAV has been confirmed from Norway, Scotland, Faroe Islands, USA (Maine), Canada (East Coast), and Chile.

2.1.1.1.3 Short description of clinical signs

The fish are lethargic, congregate in the upper water level, gasp at the surface, go off feed, and hang motionless at the sides of the cage. Affected fish may exhibit exophthalmia, ocular haemorrhage, distended abdomen and/or skin haemorrhage. Internal pathology may include dark, pale or yellow liver, ascites, pale gill and heart, enlarged spleen, petechial haemorrhage in visceral fat, dark foregut. Low haematocrit values (< 10) are typical findings. Typical histological findings are multifocal haemorrhagic hepatic necroses that may become confluent to give the changes a “zonal” appearance, leaving areas around large veins intact (late stage of disease development). Focal congestion and dilatation of hepatic sinusoids, sometimes with distribution as described for necroses (early stage), and rupture of the sinusoidal endothelium with the presence of erythrocytes within the space of Disse (early sign) are also observed (Thorud and Djupvik, 1988; Evensen et al., 1991).

2.1.1.1.4 Indications of impact/severity at stock level

ISA is a serious disease that has caused significant losses in salmon-producing countries. Clinical disease in the field due to ISAV has been recorded in Atlantic salmon and more recently in coho salmon (Onchorhynchus kisutch).

2.1.1.1.5 Control/preventive measures

Restrictions on the movement of live fish include sanitary slaughtering, disinfection of offal/wastewater...
from fish slaughterhouses, cleaning and disinfection of farm premises and equipment, fallowing, rotation of farm sites, and vaccination.

2.1.1.6 Temporal trends

ISAV was previously restricted to Norway, but has now been confirmed from all the main salmon-producing countries. This represents a major new extension of the known distribution of this disease and its viral causative agent. The origin of the infection in all affected areas remains unknown, but there is increasing evidence for a local natural presence. Zoosanitary precautions, whenever possible to enforce, have proven to be very effective in controlling the disease. During recent years, an increasing number of new outbreaks in Norway have been observed. However, in 2002, a decrease in the number of new outbreaks was reported.

2.1.1.7 Other host species

Evidence for persistence of the virus has been obtained in sea trout (*Salmo trutta*) and rainbow trout (*Oncorhynchus mykiss*) (Nylund et al., 1995). ISAV has been isolated from eel (*Anguilla anguilla*), saithe (*Pollachius virens*) (Snow et al., 2002), herring (*Clupea harengus*), and cod (*Gadus morhua*). There is evidence that sea lice (*Lepeophtheirus salmonis*) may serve as a vector for ISAV (Nylund et al., 1993).

References

2.1.1.2 Infectious Pancreatic Necrosis (IPN)

2.1.1.2.1 Description of agent

IPN is caused by a virus, IPNV, which is un-enveloped with icosahedral capsid (~ 60 nm in diameter) and a bi-segmented, double-stranded RNA genome, belonging to the genus *Aquabirnavirus*. The capsid consists of two structural proteins, VP2 and VP3. Three main serotypes have been recognized: one American (VR 299) and two European (Ab and Sp) (Dobos, 1995; Reno, 1999; Smail and Munro, 2001).

2.1.1.2.2 Geographical distribution

The disease has a wide geographical distribution, occurring in most, if not all, major salmonid farming countries of North and South America, Europe, and Asia.

2.1.1.2.3 Short description of clinical signs

Diseased fish usually appear dark, with an abnormal, lethargic swimming behaviour. Spinning movement (whirling around the longitudinal axis) is characteristic. Abdominal swelling is also characteristic, especially in fry. At necropsy, petechiae in the perivisceral adipose tissue are the most consistent lesions. Fry often show pronounced ascites, whereas post-smolts usually have little or no ascitic fluid and a remarkably dry body muscle. A whitish liver is most commonly found in fry. In the acute stage, extensive necrosis of exocrine pancreatic tissue is the most prominent lesion at histopathological examination. In these lesions, individual acinar cells are seen at different stages of degeneration and cell death. Also, foci with necrotic remnants of exocrine pancreatic cells appearing as an amorphous eosinophilic mass are often found. In liver tissue, similar foci of necrotic eosinophilic hepatocytes may be found. Usually there are small necrotic foci in the pyloric intestinal epithelium and cell debris in the lumen of the pyloric caeca. Some individuals develop a chronic disease with fibroplasias of pancreatic tissue and emaciation.
2.1.1.2.4 Indications of impact/severity at stock level

IPN is a highly contagious viral disease, principally of young salmonid species. Cumulative mortality may vary from less than 10% to more than 90%. Furthermore, IPN is known to cause significant losses in early post-smolts of Atlantic salmon.

2.1.1.2.5 Control/preventive measures

Fertilized eggs originating from IPNV carrier broodstock should be avoided. Vaccination is possible, but the efficacy of existing vaccines remains to be proven.

2.1.1.2.6 Temporal trends

In Norway and Scotland, infections with IPNV are considered to be a major problem in the post-smolt phase of Atlantic salmon. In Scotland, IPNV showed strong regional variation in marine waters between 1996 and 2001. An annual increase in the prevalence of this virus was found in seawater (10%) and freshwater sites (2% to 3%), with a greater increase (6.5%) in the Shetland Isles. Trends in clinical IPN in Scotland over the past five years have increased from 1.1% to 12.5%, but with prevalence changes between years. Similarly, in the Shetland Isles, IPN prevalence has increased from 5.2% to 14.4%. In Norway, there are indications that high density, increasing use of oxygenation and low water flow may increase losses in post smolts. Furthermore, there is increasing evidence that IPN isolates belonging to the same serotype show variations in virulence. Vaccines against IPN have been introduced in Norway, but current field data are conflicting regarding vaccine efficacy.

2.1.1.2.7 Other host species

IPNV is found in a great variety of non-salmonid fish including halibut (Hippoglossus hippoglossus), cod, haddock (Melanogrammus aeglefinus), and turbot (Scophthalmus maximus) as well as in bivalves, gastropods, and crustaceans.

References

2.1.1.3 Salmon Pancreas Disease (SPD)

Salmon Pancreas Disease is a serious infectious viral disease of farmed Atlantic salmon that primarily occurs during their first year at sea, but other year classes are also susceptible.

2.1.1.3.1 Description of agent

A toga-like virus termed salmon pancreas disease virus (SPDV) causes SPD. SPDV and sleeping disease virus (SDV) affecting trout in fresh water exhibit minor biological differences. There is a close genetic similarity between SPDV and SDV and there is indication that they are closely related isolates of the same viral species for which the name salmonid alphavirus has been proposed.

2.1.1.3.2 Geographical distribution

SPD is reported from Atlantic salmon in Scotland, Ireland, Norway, France, and North America.

2.1.1.3.3 Short description of clinical signs

Affected fish cease shoaling and are cachectic in appearance. There is a decreased feeding response; the fish become anorexic and are unable to maintain their position in the water. During the acute phase, there is a rapid and dramatic necrosis of the entire acinar tissue with eosinophilic debris voided through the ducts. SPD has also been associated with an acute cardiomypathy characterized by a coagulative necrosis, and myodegeneration and phagocytosis of fibre remnants affecting both spongy and compact layers with an increased eosinophilia and loss of striation.

2.1.1.3.4 Indications of impact/severity at stock level

SPD is an economically important disease and yearly losses of 10–50% are reported for individual farms; however, SPD and Infectious Pancreatic Necrosis Virus (IPNV) can occur concurrently and total losses may be caused by the combined infections.

2.1.1.3.5 Control/preventive measures

A reduction in common stressors, e.g., transport and handling, during the acute phase may enhance recovery. Some farmers have reported that keeping fish on a reduced pellet size feed reduces anorexia and the overall mortality associated with SPD. Vaccine trials are continuing and a commercial vaccine may be available in the near future.

2.1.1.3.6 Temporal trends

In Scotland and Ireland the number of recorded outbreaks of SPD are low.
References

2.1.2 Bacterial diseases

2.1.2.1 Vibrios (Vibrio sp.)

2.1.2.1.1 Description of agent
Atlantic salmon bacterial pathogens belonging to the genus Vibrio are ubiquitous within the marine environment. These are Gram-negative, non-sporo-forming bacteria that appear as straight or slightly curved, motile rods. All species are facultative anaerobes and ferment carbohydrates producing acid rather than gas. They are distinguished from the aeromonads by their sensitivity to the pteridine vibriostat 0/129, which inhibits cell division. Pathogenic vibrios are cultured on marine-based media containing 1–2 % sodium chloride. Inhibits cell division. Pathogenic vibrios are cultured on marine-based media containing 1–2 % sodium chloride. Among the species, the mol % G+C of the DNA is 45.6 % (V. anguillarum), and 44 % (V. salmonicida). Vibrio (Listonella) anguillarum is a serologically heterogeneous species, each serotype defined by antigenically distinct lipopolysaccharide O-antigens. In contrast, V. salmonicida is a relatively homogeneous species, represented by only two serotypes.

2.1.2.1.2 Geographical distribution

Vibrio anguillarum has been responsible for most outbreaks of vibriosis in farmed salmon worldwide (Kent and Poppe, 2002). Vibrio salmonicida, the cause of cold-water vibriosis or Hitra Disease, is a psychrophilic species reported from salmon-producing countries bordering the North Atlantic. Vibrio viscosus (= Moritella viscosa) and V. wodanis have been associated with “winter ulcer” in farmed salmon in Scotland, Norway, and Iceland (Bruno et al., 1998; Benediksdottir et al., 2000; Lunder et al., 2000). A winter-ulcer-like syndrome has been observed in farmed salmon in eastern Canada and the USA and was associated with V. wodanis (Whitman et al., 2001).

2.1.2.1.3 Short description of clinical signs

The clinical signs of vibriosis are typical of a haemorrhagic septicemia and may be manifested as peracute, acute, or chronic. In peracute vibriosis, particularly in juvenile salmon, mortality occurs in the absence of clinical signs other than the occasional oedema. Acute vibriosis is associated with anaemia, skin darkening with ulcerative swellings, red necrotic lesions in the abdominal muscle and erythema at the base of the fins, around the vent, and within the mouth. Bacteraemia occurs in most cases. In chronic vibriosis, anaemia remains a prominent sign accompanied by granulating lesions in the muscle and fibrous peritoneal adhesions. Oedema associated with acute and chronic vibriosis results in exophthalmia and abdominal distension. Mortality associated with vibriosis can be severe. Fish affected with V. salmonicida generally exhibit an extensive haemorrhaging of the visceral organs with oedema, pale gills, and erythema, and associated swelling of the vent. The pathogenicity of this organism is less than that of V. anguillarum. Winter ulcers may be associated with elevated mortality and, as the name suggests, are most commonly observed during the first winter at sea. Moribund fish become lethargic and cease feeding. Ulcers ranging in size from a few millimetres to several centimetres occur on the flanks and are surrounded by hyperaemia or haemorrhage.

2.1.2.1.4 Indications of impact/severity at stock level

Vibriosis in farmed salmon has largely become a disease of historical interest because of the widespread application of effective vaccines. The present impact of vibriosis caused by V. anguillarum and V. salmonicida is minimal and when outbreaks do occur they are associated with failure to vaccinate or use of an inappropriate vaccine. Winter ulcer continues to have some impact on the industry in Norway.

2.1.2.1.5 Control/preventive measures

Adequate vaccination, along with the maintenance of optimal husbandry practices, has provided the single most important means of preventing vibriosis. The serological heterogeneity among Vibrio species and serotypes requires that vaccines must contain representative antigens of each as cross protection is not elicited. In the event of an outbreak, the rapid development of disease often reduces the effectiveness of oral antibiotic treatment since affected fish refuse to eat. Therefore, where rapid diagnosis and effective treatment is not possible, isolation or removal of diseased fish remains the most effective control. Recent indications from Norway are that, as with other vibrios, vaccination against V. viscosus is beneficial.

2.1.2.1.6 Temporal trends

Vibriosis has been effectively controlled through the widespread use of vaccination. Diseases caused by V. anguillarum and V. salmonicida have been virtually non-existent in salmon culture for several years. In 2001, an increasing trend in cases of V. viscosus was reported from Scotland, and disease outbreaks were observed in Norway despite vaccination.
2.1.2.1.7 Other host species

Vibriosis has been reported from a wide range of fish species in marine and brackish waters. *Vibrio anguillarum* has been associated with disease outbreaks in numerous farmed non-salmonid and salmonid fish species (Toranzo and Barja, 1990). *Vibrio salmonicida* is primarily associated with Atlantic salmon, but the bacteria has also been isolated from diseased rainbow trout and Atlantic cod. *Vibrio viscosus* has also been isolated from rainbow trout (Larsen and Pedersen, 1999).

References

Pedersen, K. 1999. The fish pathogen *Vibrio anguillarum* with special emphasis on ecology, epizootiology, pathogenicity, serology and typing methods. PhD-thesis, The Royal Veterinary and Agricultural University, Department of Veterinary Microbiology, Laboratory of Fish Diseases, Copenhagen, 192 pp.

2.1.2.2 Furunculosis (*Aeromonas salmonicida*)

Classical furunculosis derives its name from the boil-like lesions observed on the skin and in the musculature of infected fish. However, development of “furuncles” on the dorsal body is the exception rather than the rule and tends only to occur in older fish suffering from the chronic form of the disease.

2.1.2.2.1 Description of agent

Aeromonas salmonicida is a non-motile Gram-negative, facultative anaerobe, rod-shaped bacterium. Classification of *Aeromonas salmonicida* into several subspecies has been discussed for a long time and a number of subspecies have been proposed (Austin and Austin, 1999). *A. salmonicida* subsp. *salmonicida* strains associated with classical furunculosis in salmonids are termed “typical”, while all other strains which do not fit into this description are called “atypical” including *A. salmonicida* subsp. *achromogenes*, *A. salmonicida* subsp. *nova*, and *A. salmonicida* subsp. *smithia*. This overview will concentrate on the classical furunculosis caused by the “typical” *A. salmonicida* subsp. *salmonicida*.

2.1.2.2.2 Geographical distribution

Classical furunculosis is present worldwide. However, *A. salmonicida* subsp. *salmonicida* has so far not been reported from Australia.

2.1.2.2.3 Short description of clinical signs

The clinical manifestations of classical furunculosis are often divided into peracute (usually restricted to young fish), acute (in growing fish), and subacute or chronic (in older fish) forms. Fish may darken and go off feed. Fish may show slight exophthalmia, focal haemorrhage in the gills with dilated blood vessels and punctate haemorrhage. Internally, the viscera are hemorrhagic, the kidney is very soft, the spleen enlarged, and the liver pale or mottled with petechiae. In chronic cases, there is a more gradual onset of mortality. Externally, fish have skin lesions or furuncles, along with internal lesions (Brown and Bruno, 2002).

2.1.2.2.4 Indications of impact/severity at stock level

Due to vaccination programmes, the impact of *A. salmonicida* on stock levels has considerably decreased and furunculosis is no longer perceived as a problem in the commercial sector in Europe. However, the oil-based adjuvants added to the vaccines are causing side effects in vaccinated fish including granuloma formation and visceral adhesions.

2.1.2.2.5 Control/preventive measures

Control of furunculosis has been achieved through successful vaccination programmes using oil-based vaccines and through improved management.

2.1.2.2.6 Temporal trends

After the introduction of oil-based vaccines, disease outbreaks due to “typical” *A. salmonicida* have declined drastically and the last five years of data indicate that clinical outbreaks have remained low, with a possible slight decline.
2.1.2.2.7 Other host species

“Typical” A. salmonicida has been associated with clinical disease outbreaks in a number of farmed salmonids and non-salmonids as well as in wild fish from sea water (Bernoth, 1997). Atypical variants of A. salmonicida have been introduced into Australia with the importation of diseased goldfish (Trust et al., 1980) and have been isolated from other non-salmonids, including cod and spotted wolffish (Anarhichas minor) (Cornick et al., 1984).

References

2.1.2.3 Piscirickettsiosis (Piscirickettsia salmonis)

Piscirickettsiosis (Piscirickettsia salmonis) was reported for the first time from coho salmon in Chile, but it is now also common in both Atlantic salmon and rainbow trout (Kent and Poppe, 2002). The disease is occurring mainly in marine water although some outbreaks have been reported from fresh water, probably due to the transport of infected eggs from salt water to fresh water (Gaggero et al., 1995). It is suggested that P. salmonis infects the host in the sea water; however, a marine reservoir has not yet been identified.

2.1.2.3.1 Description of agent

P. salmonis is a pleomorphic, Gram-negative, motile, coccoid bacterium occurring intracellularly as individuals, pairs or groups.

2.1.2.3.2 Geographical distribution

P. salmonis has been found from the east and west coasts of Canada, Chile, Ireland, Norway, Scotland, and the west coast of the USA (Fryer and Hedrick, 2003).

2.1.2.3.3 Short description of clinical signs

Severely affected fish are lethargic, dark in colour, and show pale gills and inappetance. Less affected fish may show no abnormal external signs. Internally, the kidney is swollen and discoloured, and the spleen is enlarged. Ascites and haemorrhages on internal organs and body musculature may be present. The liver might be pale and exhibit cream-coloured circular opaque nodules (Olsen, 1999; Fryer and Hedrick, 2003).

2.1.2.3.4 Indications of impact/severity at stock level

The impact of the pathogen on Atlantic salmon has been rather moderate compared to the mortalities observed in coho salmon, which might reach up to 90 % (Olsen, 1999).

2.1.2.3.5 Control/preventive measures

Improved husbandry practices appear to aid in minimizing infections caused by P. salmonis. Antimicrobials have been used but the efficacy of these treatments is inconsistent, probably due to the difficulty in obtaining intracellular concentrations of drug sufficient to kill the bacteria. Promising results of vaccination trials indicate that the disease can be better controlled in the near future.

2.1.2.3.6 Temporal trends

An increased incidence of the disease has recently (2002) been observed in Norway, and in 2002, P. salmonis was detected in Scotland for the first time since 1996.

2.1.2.3.7 Other host species

P. salmonis has been associated with disease in coho salmon, rainbow trout, cherry salmon (Oncorhynchus masou), chinook salmon (O. tshawytscha), pink salmon (O. gorbuscha), and white sea bass (Atractoscion nobilis) (Fryer and Hedrick, 2003).

References

2.1.3 Parasitic diseases

2.1.3.1 Sea lice (*Lepeophtheirus salmonis*)

Sea lice are the most economically important parasites affecting salmon in cage culture. The group encompasses several species of marine ectoparasitic copepods of the genera *Lepeophtheirus* and *Caligus*, family Caligidae, that infect marine fishes, particularly salmonids.

2.1.3.1.1 Description of agent

Sea lice have ten developmental stages: two free-living planktonic nauplius stages, one free-swimming infectious copepodid stage, four attached chalimus stages, two pre-adult stages, and one adult stage. The copepodid, chalimus, pre-adult, and adult stages all feed on mucus, skin, and blood of fish. Copepodids and chalimus larvae of sea lice are small (< 4 mm in length) and can occur on the body surface and fins as well as in the buccal cavity and on the gills. Pre-adult and adult sea lice are visible to the naked eye. They usually occur on the body surface, especially on the head, back, and the perianal region. These stages cause the most damage to the fish. Pre-adult and adult stages of *Caligus* species can be distinguished from *Lepeophtheirus* species by the presence of lunules on their anterior margin.

2.1.3.1.2 Geographical distribution

Lepeophtheirus salmonis has a circumpolar distribution and is restricted to salmonids, except as a result of accidental transfer from salmonids. In contrast, *Caligus* species infecting salmon have broad host ranges that include both non-salmonid teleost and elasmobranch hosts.

2.1.3.1.3 Short description of clinical signs

Attack by sea lice can cause skin lesions that range from minor to severe. Fish will show a tendency to go off feed, thus reducing growth and condition. Heavy infections greatly reduce the market value of the fish and ultimately result in death. Mortality may occur due to the development of secondary diseases (e.g., vibriosis, furunculosis) fostered by the high levels of accompanying stress. In severe cases where the epidermis is breached, death may be due to a loss of physiological homeostasis including osmotic stress, anaemia, and hypoproteinaemia. Pre-adult and adult parasites actively move on the surface of fish, and lesions caused by these stages may be severe and widespread. In contrast, damage by the non-motile copepodid and chalimus larvae is generally localized. Infected salmon commonly show mild to extensive areas of skin erosion and haemorrhaging on the head and back and exhibit distinct areas of erosion, dark colouration, and subepidermal haemorrhage in the perianal region. Severely infected salmon show ulcers in which the epidermis is breached and the underlying tissues are exposed. These lesions often occur on the head and behind the dorsal fin.

2.1.3.1.4 Indications of impact/severity at stock level

Gordon Rae of Scottish Quality Salmon (SQS) estimated (June 2001) the cost of sea lice to the Scottish industry at over 43 million EURO, composed thus:

Loss of growth in fish: 5 % per annum - value in 2000:	EURO 21 million
Cost of medicines	EURO 8 million +
Additional labour and hardware	EURO 3 million
Accidental mortality during treatment	EURO 3 million +
Mortality and downgrades at harvest	EURO 8 million +

2.1.3.1.5 Control/preventive measures

The main therapeutant products for control of sea lice currently licensed for use in the UK are as follows:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Type</th>
<th>Active constituent</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excis</td>
<td>Bath</td>
<td>Cypermethrin</td>
<td>Novartis</td>
</tr>
<tr>
<td>Salmosan</td>
<td>Bath</td>
<td>Azamethipos</td>
<td>Novartis</td>
</tr>
<tr>
<td>Calicide</td>
<td>In-feed</td>
<td>Teflubenzuron</td>
<td>Nutreco/Trouw</td>
</tr>
<tr>
<td>Slice</td>
<td>In-feed</td>
<td>Emamectin benzoate</td>
<td>Schering-Plough</td>
</tr>
</tbody>
</table>

Bath treatments are usually administered by placing tarpaulin skirts around the cages. In-feed treatments are administered over a seven-day period, to cover the varying appetites and feeding patterns in individual fish. The advantages to farmers of in-feed treatments are that they are easy to administer, non-weather-dependent and, in the case of Slice, 100 % effective against all parasitical stages of the louse. Calicide exerts its effects at the molting stage, and so must be used before adult lice appear.

With the use of bath treatments, re-infestation can occur within a very short period, particularly if not all the lice are killed. Such treatments are effective only against the mobile stages of lice, and their administration stresses the fish. A critical period exists during which the use of these products is most efficacious. Hydrogen peroxide, which was widely used in the industry until the late 1990s, is a less popular choice due to reduced efficacy due to reduced efficacy that has resulted from growing resistance to the product in lice.

In Norway, the following quantities of lice treatment products were prescribed in 2000. Provisional figures suggest a reduction in amounts for 2001.
Cypermethrin (Exis, Betamax): 68.7 kg
Deltamethrin (Alpha Max): 17.6 kg
Diflubenzuron (Lepsidon): 12.4 kg
Emamectin benzoate (Slice): 11.0 kg
Teflubenzuron (Ektoban): 61.5 kg

In Norway, wrasse are frequently used to control sea lice numbers. However, this practice has declined recently as it is difficult to combine with an almost zero-tolerance for lice, which requires delousing at low infestation levels. Other control methods are organized delousing at low temperatures and synchronized delousing. In Ireland, Slice is being widely used as an in-feed treatment, particularly for the first year in the sea. It is proving very effective.

2.1.3.1.6 Temporal trends

During the past several years, sea lice infestations in farmed fish have been controlled by chemotherapeutics in Scotland and Norway. However, in Norway, the main problem is an apparent increase in infestation of wild fish.

In Ireland, the trend in lice numbers is downwards. The national mean for ovigerous lice in 2001 was less than 0.5 per fish. The spring levels as measured in May were lower for both ovigerous and total mobile lice than in the previous year and continue a downward trend begun in 1998. Management protocols are in place nationally that trigger treatments once levels exceed 0.3–0.5 ovigerous lice per fish during the spring and 2.0 ovigerous lice during the remainder of the year.

2.1.3.1.7 Other host species

See Section 2.1.3.1.2, above.

References

2.2 Other salmonids

2.2.1 Viral diseases

2.2.1.1 Viral Haemorrhagic Septicaemia (VHS)

Viral Haemorrhagic Septicaemia (VHS) is caused by a Novirhabdovirus (VHS Virus – VHSV) belonging to the rhabdovirus family. The size of the virus particle is approximately 70 nm x 180 nm and the virus is sensitive to a number of organic solvents as well as acids and bases. The virus has five structural proteins of which the G-protein is the most important with regard to antigenicity and virulence.

VHS is the most important viral disease of farmed salmonid fishes in Europe (McAllister et al. 1985). VHS was regarded as a freshwater trout disease until 1988, when VHSV was isolated for the first time in North America from returning chinook salmon (Oncorhynchus tshawytscha) (Hopper, 1989) and coho salmon (O. kisutch) (Bruson et al., 1989).

So far, VHSV has been isolated from twelve different species in the North American Pacific area, three different species in the North American Atlantic area, one species in Japan, and fifteen species in the North Sea area and adjacent areas including the Baltic Sea, but the number of host species still seems to be increasing.

Serological analyses were not able to distinguish the North American VHSV isolates from the typical European reference strains (Winton et al., 1989). Nucleotide sequencing and phylogenetic analysis demonstrated four distinct genotypes (Snow et al., 1999). Genotype I comprised European freshwater VHSV isolates causing mortality in rainbow trout and a group of marine isolates from the Baltic Sea as well as a German turbot isolate (Schlotfeldt et al., 1991). Genotype II comprised a group of marine isolates circulating in the Baltic Sea. Genotype III comprised a Scottish turbot VHSV isolate (Ross et al., 1994) and isolates from wild marine fishes in the adjacent sea areas. The North American Pacific herring VHSV isolates comprised a fourth distinct type.

2.2.1.2 Geographical distribution

VHS is widely distributed in the continental parts of Europe having intensive production of rainbow trout in freshwater aquaculture. Finland, Sweden, Norway, UK, and Ireland are considered free of VHS although a few outbreaks have been observed in marine fish farms in Finland and Sweden in recent years. In Spain, the virus has not been diagnosed for more than ten years and it has never been diagnosed in Portugal or Greece (Olesen, 1998). In Pacific USA and Canada, VHSV has been
isolated from Pacific salmon species ascending the rivers for spawning. In the marine environment, isolates have been made from wild fishes in the Pacific and Atlantic coastal areas of the USA, Canada, and Japan. In Europe, marine VHSV has been isolated from fish in the North Sea, the English Channel, the Skagerrak, the Kattegat, and the Baltic Sea.

2.2.1.1.3 Short description of clinical signs

The clinical signs of classical VHS in freshwater salmonids are dark skin and pale gills, petechiae in the gills and in the skin, and haemorrhages in the orbits and exophthalmus. Widespread petechiae developing to haemorrhages are observed in the peritoneal surfaces, in the swimbladder, in the skeletal muscles, and in the meninges. The liver is pale with haemorrhages, and the spleen is often enlarged and reddish. High mortality is observed in the acute phase of the disease.

The clinical signs in marine fishes are quite varying. In Pacific salmonids, VHSV was isolated from fish without clinical signs. In Pacific cod (Gadus macrocephalus) and herring (Clupea harengus pallasi), infection appeared to be associated with skin lesions, while other Pacific fish species from which VHSV was isolated did not display any gross symptoms. In European waters, the clinical signs in farmed salmonids and turbot were almost identical; classical signs were observed in freshwater salmonids, whereas VHSV in most other fish species was isolated from specimens showing no clinical signs.

The North American VHSV isolates were found to be less pathogenic to rainbow trout than the European reference strains (Winton et al., 1991).

2.2.1.1.4 Indications of impact/severity at stock level

So far, two mass mortality events have been reported from the Pacific USA and Canada. In August 1998, mass mortalities in Pacific herring, Pacific hake (Merluccius productus), and in Walleye pollock (Theragra chalcogramma) were reported in Lismianski Inlet, Alaska. Marine VHSV could be isolated from samples of dead fish of all three species (Meyers et al., 1999). None of the affected fish showed any gross external or internal lesions and the histology displayed unspecific changes of which some could be referred to as autolytic changes.

During the period November 1998 to February 1999 another mass mortality occurred a little further south in Queen Charlotte Strait, on the northeast coast of Vancouver Island. In particular, pilchards (Sardinops sagax) but also Pacific herring, blackcod (Anaplopoma fimbria), ratfish (Hydrolagus collieti) and shinner perch (Cytomaster aggregata) were reported floating on the surface moribund or dead (Traxler et al., 1999). On this occasion, marine VHSV was isolated from pilchard, Pacific herring, and blackcod.

2.2.1.1.5 Control/preventive measures

According to the OIE International Aquatic Animal Health Code, Viral Haemorrhagic Septicaemia is a notifiable disease. This means that, in case of outbreaks of VHS in areas having a disease-free status, OIE has to be informed and specific eradication measures have to be implemented to reduce the risk of spread of the disease. Affected farmed fish stocks must be destroyed. Similar measures have to be taken within EU countries according to EU Council Directive 91/67. However, the widespread distribution of VHSV in marine fish species may cause serious problems for marine aquaculture.

2.2.1.1.6 Temporal trends

An occurrence of VHS, with no associated pathology, was reported in 1998 from a hatchery in western Norway. This is the first record of this disease in rainbow trout in Norway since 1974. Following stock eradication, no new cases have been reported. In 1998, VHS was recorded in a small rainbow trout, on a fattening farm on the Swedish west coast. This was the first record of this disease in Sweden since 1972. The disease recurred at the site in 2000. The fish stock was destroyed on both occasions. In 2000, clinical VHS was diagnosed in sea-reared rainbow trout from four farms in two areas in Finland. Exclusion orders and destruction of the stock were implemented at three farms. Wild fish are strongly suspected as the source of infection. It has not been possible to trace the source of the infection for any of these outbreaks.

2.2.1.1.7 Other host species

Since 1998, VHS-like virus has been isolated from an increasing number of wild fish species along the US and Canadian Pacific and Atlantic coasts, in the North Sea, the Skagerrak, the Kattegat, and the Baltic Sea.

References

Hopper, K. 1989. The isolation of VHSV from chinook salmon at Glenwood Springs, Orcas Island, Washington. Fish Health Section, American Fisheries Society Newsletter, 17: 1

2.2.2 Bacterial diseases

2.2.2.1 Vibriosis (Vibrio sp.)

See Section 2.1.2.1, above.

2.2.2.2 Furunculosis (Aeromonas salmonicida)

See Section 2.1.2.2, above.

2.3 Sea Bass (Dicentrarchus labrax)/Seabream (Sparus aurata)

2.3.1 Viral diseases

2.3.1.1 Viral Encephalopathy and Retinopathy (Nodavirus)

2.3.1.1.1 Description of agent

The causative agent belongs to the Nodaviridae family. A description is provided in Section 2.4.1.1, below, on nodavirus in halibut.

2.3.1.1.2 Geographical distribution

Nodavirus infection in sea bass and seabream has been described in France and also in most of the Mediterranean countries.

2.3.1.1.3 Short description of clinical signs

Most often no external signs are associated with nodavirus infection, which causes Viral Encephalopathy and Retinopathy (VER), although some whitish discoulouration on the cranial epithelium and reddening of cephalic area may be visible. Clinical signs are for the most part abnormal swimming behaviour: fish swim quickly in circles or stay in a vertical position with the head or caudal peduncle above the water surface. Microscopic observation shows spongiosis of the nervous system.

2.3.1.1.4 Indications of impact/severity at stock level

Nodavirus infections in commercial hatcheries affect mainly larvae and juveniles, but also one-year-old fish. Mortality ranging from 15–60 % has been recorded. Seabream seems to be less susceptible to the disease than sea bass.

2.3.1.1.5 Control/preventive measures

No completely effective control measures for nodavirus have been established, however, screening of broodstock (gonads, sera) in order to obtain nodavirus-free broodstock is recommended. The best preventative action is application of strict general hygienic measures on farms.

2.3.1.1.6 Temporal trends

Nodavirus infection has become the major viral disease problem in sea bass farms, where it causes important economic losses.

2.3.1.1.7 Other host species

See Section 2.4.1.1, below.

References

ICES Cooperative Research Report, No. 265
2.3.2 Bacterial diseases

2.3.2.1 Pasteurellosis (Photobacterium damselae subsp. piscicida)

2.3.2.1.1 Description of agent

Pasteurellosis is caused by the halophilic bacterium Photobacterium damselae subsp. piscicida (formerly Pasteurella piscicida), which was originally isolated during 1963 mortality episodes in natural populations of white perch (Morone americana) and striped bass (M. saxatilis) in Chesapeake Bay. The pathogen is a Gram-negative non-motile rod-shaped to coccobacilli, oxidase and catalase positive, fermentative, arginine dihydrolase positive and lysine and ornithine decarboxilase negative. The bacterium is sensitive to the vibriostatic agent O/129. It grows between 15–32 °C with an optimum temperature of 22–30 °C.

Regardless of the geographic origin and source of isolation, all strains of this pathogen are biochemically and serologically homogeneous (Magariños et al., 1992, 1996). However, DNA fingerprinting methods, such as ribotyping (Magariños et al., 1997), AFLP (Thyssen et al., 2000) and RAPD (Magariños et al., 2000), have proven to be valuable epidemiological tools since they demonstrate two clearly separate clonal lineages within Ph. damselae subsp. piscicida, i.e., the European and Japanese isolates.

The presumptive identification of the pathogen is based on standard biochemical tests. In addition, although Ph. damselae subsp. piscicida is not included in the API-20E code index, this miniaturized system can also be useful for a rapid presumptive diagnosis of the disease because all strains display the same profile (2005004) (Magariños et al., 1992). A slide agglutination test using specific antiserum is needed to confirm identity of the microorganism.

In the last few years, the Norwegian company Bionor AS has marketed different diagnostic kits based not only on direct bacterial agglutination (Mono-Pp) but also on ELISA (Aquarapid-Pp or Aquaeia-Pp), which allow rapid detection of Ph. damselae subsp. piscicida in fish tissues. The evaluation of these ELISA kits in the field demonstrated that the sensitivity of the Aquaeia-Pp (magnetic beads-EIA based method) was 100 to 1000 times higher than that of the standard ELISA Kit (Aquarapid-Pp) (Romalde et al., 1995, 1999b), which indicates its usefulness for the detection of asymptomatic carrier fish.

Since 1997, a variety of DNA-based protocols have also been developed for rapid and specific detection of the causative agent of pasteurellosis. Only a multiplex PCR approach using as target the 16S ribosomal (16S rDNA) and ureC genes allowed the specific discrimination between Ph. damselae subsp. piscicida and Ph. damselae subsp. damselae (formerly, Vibrio damselae) (Osorio et al., 1999, 2000; Osorio and Toranzo, 2002).

2.3.2.1.2 Geographical distribution

Since 1969, pasteurellosis has been one of the most important diseases of farmed fish in Japan, affecting mainly yellowtail (Seriola quinqueradiata). From 1990 to present, it has caused important economic losses in the marine culture of gilthead seabream (Sparus aurata) and sea bass in the Mediterranean countries of Europe, and hybrid striped bass (M. saxatilis × M. chrysops) in the USA (Toranzo et al., 1991; Magariños et al., 1996; Romalde and Magariños, 1997; Zorrilla et al., 1999; Romalde et al., 1999a). Pasteurellosis outbreaks have been reported recently in the newly developed culture of common sole (Solea solea and S. senegalensis) in several Mediterranean countries.

2.3.2.1.3 Short description of clinical signs

Fish pasteurellosis was also known as pseudotuberculosis because it is characterized by the presence of white nodules on the internal viscera, particularly the spleen and kidney. Severe mortalities usually occur when water temperatures are above 18–20 °C. Below this temperature, fish can harbour the pathogen as sub-clinical infections for long periods (Magariños et al., 2001).

2.3.2.1.4 Indications of impact/severity at stock level

Differences in susceptibility to pasteurellosis based on age have been demonstrated in seabream, with adult fish being highly resistant to the infection. The disease is most severe from the larval stages to 10 g fish. Histological observations and in vitro killing assays have demonstrated that neutrophils and macrophages of older seabream efficiently phagocytose and kill the bacteria, while these cell types are not functional in small fish (Noya et al., 1995).

2.3.2.1.5 Control/preventive measures

The application of rapid, specific, and sensitive serological and molecular tools such as those based on ELISA or PCR is of crucial importance in the case of pasteurellosis since it has been demonstrated that the pathogen can be transmitted through the ovarian and seminal fluids from apparently healthy broodstock (Romalde et al., 1999b). Moreover, this microorganism undergoes a viable but non-culturable state that makes its detection in the farm environment very difficult.

Several commercial vaccines against Ph. damselae subsp. piscicida are available but their efficacy is dependent on the fish species, fish size, vaccine formulation, and use of immuno-stimulants. Only the toxoid enriched-whole-cell bacterin (DI vaccine) developed by the University of Santiago (Spain) and produced by Hipra Veterinary Laboratories (Spain) was effective in 50-day-old gilthead seabream larvae. As the majority of the pasteurellosis outbreaks occur in larval to fingerling (10–30 g) stages, a vaccination programme...
comprising a first dip immunization at the larval stage (0.03–0.05 g) and a booster vaccination when fish reach about 1–2 g is recommended to avoid the high economic losses caused by this disease (Magariños et al., 1994, 1999).

Despite the heavy impact on aquaculture of some species, the disease is not included in the OIE International Aquatic Animal Health Code nor in the EU legislation.

2.3.2.1.6 Temporal trends

Since 1990, pasteurellosis has caused very important losses to Mediterranean aquaculture, basically in the production of alevins and juvenile stages. With the introduction of vaccines, and improving management practices in hatcheries, there is a slowly declining trend in disease outbreaks.

2.3.2.1.7 Other host species

See Section 2.3.2.1.2, above.

References

2.4 Halibut (*Hippoglossus hippoglossus*)

2.4.1 Viral diseases

2.4.1.1 Viral Encephalopathy and Retinopathy (Nodavirus)

2.4.1.1.1 Description of agent

Viruses belonging to the Nodaviridae are the causative agents of Viral Encephalopathy and Retinopathy (VER). These viruses are un-enveloped and icosahedral, with diameters of approximately 25 nm. The bipartite genomes consist of single-stranded, positive-sense non-polyadenylated RNA molecules, encoding the putative RNA-dependent RNA polymerase (RNA1) and the capsid protein precursor (RNA2) (Grotmol et al., 2000).
2.4.1.1.2 Geographical distribution

Nodavirus infections have been confirmed in halibut aquaculture systems in Norway and Scotland.

2.4.1.1.3 Short description of clinical signs

Common clinical signs of VER include lack of appetite, changes in pigmentation, hyperinflation of the gas-bladder, hyperreactivity and abnormal swimming behaviour. Gross pathological changes are uncommon, while characteristic microscopic lesions include cellular vacuolation and neuronal degeneration in the central nervous system (CNS) and the retina and ganglia of the peripheral nervous system (Grotmol et al., 1997).

2.4.1.1.4 Indications of impact/severity at stock level

Nodavirus infections have occurred in commercial hatcheries in Norway causing high mortalities and are believed to be one of the main obstacles to the production of halibut juveniles.

2.4.1.1.5 Control/preventive measures

The most effective control and preventive measures include optimization of production factors and improved hatchery hygiene, use of nodavirus-free broodstock, and treatment of hatchery production water. Recently, vaccinations against nodavirus infections are being developed (Husgard et al., 2001).

2.4.1.1.6 Temporal trends

Nodavirus infections are a potential emerging major disease problem in the farming of Atlantic halibut.

2.4.1.1.7 Other host species

Nodavirus has been isolated from and reported to cause disease in an increasing number of marine fish species (Munday et al., 2002). It has been isolated in more than 35 species belonging to at least fourteen families (including wild fish) throughout the world where aquaculture has developed. Most of the affected species are warm-water fish, having an optimal growth at 20 °C to 30 °C, but the disease also occurs in cold-water species. In 2002, nodavirus infections caused significant mortalities in Atlantic cod (Canada and USA) and in haddock (Canada). In the Mediterranean area, sea bass and seabream are affected (see Section 2.3.1.1, above).

References

2.5 Turbot (Scophthalmus maximus)

2.5.1 Bacterial diseases

2.5.1.1 Flexibacteriosis (Flexibacter maritimus)

2.5.1.1.1 Description of agent

Flexibacter maritimus (formerly, Cytophaga marina and Flexibacter marinus) is the causative agent of flexibacteriosis in marine fish (Wakabayashi et al., 1986; Bernardet and Grimont, 1989). Several other names, including “gliding bacterial diseases of sea fish”, “eroded mouth syndrome”, and “black patch necrosis”, have been used to designate the disease caused by this bacterium. On the basis of recent phylogenetic, chemotaxonomic and phenotypic studies, it was proposed that Flexibacter maritimus should be transferred to the new genus Tenacibaculum, as Tenacibaculum maritimum (Sukui et al., 2001).

F. maritimus is a Gram-negative bacterium that forms long slender rods (0.5 µm by 30 µm to up to 100 µm). The pathogen is oxidase- and catalase-positive and displays an oxidative metabolism. Gliding motility is a characteristic feature of this bacterium. Generally, growth occurs between 15–34 °C (optimum at 25–30 °C).

The preliminary diagnosis must be supported by an isolation of the pathogen in the appropriate medium or by the use of specific molecular DNA-based methods applied directly to fish tissues. This bacterium grows only in specific media since it has an absolute requirement for sea water as well as a low concentration of nutrients. Although several media (i.e., Anacker and Ordal, Marine Agar, FMM) have been devised to isolate F. maritimus, the FMM medium has proven to be the most effective for recovery of this pathogen from fish tissues (Pazos et al., 1996). Typical colonies of F. maritimus are pale yellow and flat, with uneven edges. Although the bacterium is biochemically homogeneous, two main O antigenic groups can be detected in marine fishes (Pazos et al., 1993; Ostland et al., 1999; Avendaño et al., 2003).
One of the major problems in the study of this bacterium is the difficulty of distinguishing it from other phylogenetically and phenotypically similar species, particularly those of the genera *Flavobacterium* and *Cytophaga*. Therefore, the application of the PCR methodology is very important for an accurate identification of the pathogen. Different PCR protocols have been published using the 16S rRNA gene as target (Toyama et al., 1996; Bader and Shotts, 1998; Osorio and Toranzo, 2002) which demonstrated its efficacy in field conditions.

2.5.1.1.2 Geographical distribution

Marine flexibacteriosis is widely distributed in cultured and wild fish in Europe, Japan, and the USA (McVicar and White, 1979; Wakabayashi et al., 1986; Pazos et al., 1993; Devesa et al., 1989; Santos et al., 1999). In Europe, the disease has been reported in sole, sea bass, turbot, and coho salmon (*Onchorhyncus kisutch*). In Japan, *F. maritimus* has been isolated from red seabream (*Pagrus major*), black seabream (*Acanthopagrus schlegeli*), and flounder (*Paralichthys olivaceus*). In the USA, marine flexibacteriosis has been described in white sea bass, Pacific sardine, and Pacific anchovy (*Engraulis mordax*).

2.5.1.1.3 Short description of clinical signs

In general, the affected fish have eroded and haemorrhagic mouths, ulcerative skin lesions, frayed fins, and tail rot. A systemic disease can also be established involving different internal organs. The loss of epithelial integrity, typical of this disease, is also a portal of entry for secondary bacterial or parasitic pathogens.

The clinical signs, along with the microscopical observation of accumulations of very long rods in wet mounts or Gram-stained preparations obtained from gills or lesions, can be used as an initial step for the presumptive diagnosis of marine flexibacteriosis.

2.5.1.1.4 Indications of impact/severity at stock level

Although both adults and juveniles may be affected by marine flexibacteriosis, younger fish suffer a more severe form of the disease. An increased prevalence and severity of the disease have been reported at higher temperatures (above 15 °C). In addition to water temperature, the disease is influenced by a multiplicity of environmental (stress) and host-related factors.

2.5.1.1.5 Control/preventive measures

Until recently, no vaccines were available to prevent the disease (Bernardet, 1997), however, a flexibacteriosis vaccine has now been developed by the University of Santiago (Spain) and produced by Hipra (Spain). It is the only bacterin currently on the market to prevent mortalities caused by *F. maritimus* in marine fishes. Divalent formulations to prevent simultaneous flexibacteriosis/vibriosis or flexibacteriosis/streptococcosis are also available.

Marine flexibacteriosis is not listed in OIE or EU legislation.

2.5.1.1.6 Temporal trends

Flexibacteriosis in turbot showed an increasing trend from 1996 until the middle of 1999. Since then, vaccination has helped to reduce losses.

2.5.1.1.7 Other host species

See Section 2.5.1.1.2, above.

References

3 Diseases of Farmed Molluscs

3.1 European flat oyster (*Ostrea edulis*)

3.1.1 Viral diseases

3.1.1.1 Herpesvirus

3.1.1.1.1 Description of agent

See Section 3.2.1.1.1, below.

3.1.1.1.2 Geographical distribution

Herpes-like virus infections have been reported in spat and larvae of the European flat oyster in France (Comps and Cochennec, 1993; Renault et al., 2000). Concomitant mortalities were observed among larvae and spat of Pacific oyster (*Crassostrea gigas*) and *O. edulis* in 1994 and 1995, with the detection of herpes-like virus particles by transmission electron microscopy (Renault et al., 2000). In 2000, the viral infection of *O. edulis* was also reported in one larval sample in the United Kingdom originating from a commercial hatchery.

Replication of herpes-like viruses has been described in adults of the Australian flat oyster (*O. angasi*) in Australia (Hine and Thorne, 1997) and in larval *O. (≡ Tiostrea) chilensis* in New Zealand (Hine, 1997; Hine et al., 1998).

3.1.1.1.3 Short description of clinical signs

See Section 3.2.1.1.3, below.

3.1.1.4 Indications of impact/severity at stock level

So far, there have been no indications of impacts at stock level.

3.1.1.5 Control/preventive measures

See Section 3.2.1.1.5, below.

3.1.1.6 Temporal trends

Herpes-like viral infections have been reported regularly in *Ostrea edulis* spat and larvae in France since 1993.

3.1.1.7 Other host species

So far, herpes-like viruses have been reported from nine different bivalve species around the world on the basis of transmission electron microscopy and molecular techniques: Pacific oyster, American oyster (*C. virginica*), Portuguese oyster (*C. angulata*), European flat oyster, Australian flat oyster, *O. (≡ Tiostrea) chilensis*, Manila clam (*Ruditapes philippinarum*), carpet shell clam (*R. decussatus*), and scallop (*Pecten maximus*). The number of host species seems to be still increasing.

References

3.1.2 Parasitic diseases

3.1.2.1 Bonamiosis (*Bonamia* sp.)

3.1.2.1.1 Description of agent

When stained with a commercial bloodstaining kit, the parasite (2–5 µm in size) has a basophilic cytoplasm and an eosinophilic nucleus (colours may vary with the stain used). It may be observed inside or outside the haemocytes. At the electron microscope level, most of the information available in the literature concerns dense forms (Pichot et al., 1979; Grizel et al., 1983; Montes et
Bonamia ostreae has been reported in Denmark, France, Ireland, Italy, the Netherlands, Spain, the United Kingdom (excluding Scotland) (Pichot et al., 1979; Comps et al., 1980; Grizel and Tigé, 1982; Bannister and Key, 1982; van Banning, 1982; Polanco et al., 1984), and the USA (Elston et al., 1986) (California, Maine, and Washington State). A related species, B. exitiosus, has been described from New Zealand (around South Island and lower North Island) (Hine et al., 2001) and an unidentified species has been detected in Australia (Western Australia, Victoria, and Tasmania) (OIE, 2000).

3.1.2.1.3 Short description of clinical signs

Most infected oysters show no obvious macroscopic symptoms, although infections are sometimes accompanied by yellow discoloration and extensive lesions in the gills and mantle. Microscopic lesions (cellular infiltration) occur in the connective tissue of the gills, mantle, and digestive gland.

3.1.2.1.4 Indications of impact/severity at stock level

In highly susceptible hosts, bonamiosis is a lethal infection. These intrahaemocytic protists quickly become systemic, with overwhelming numbers of parasites coinciding with the death of the oysters.

3.1.2.1.5 Control/preventive measures

Importation of molluscs should occur only from countries where no outbreak caused by B. ostreae has occurred for at least the previous two years and no B. ostreae has been detected in any mollusc tested during an official mollusc health surveillance programme, using the procedures described in the OIE Manual, for a period of at least two years.

When the imported molluscs are going to be immersed in local waters, the Competent Authority of the importing country should require that the consignment be accompanied by an international aquatic animal health certificate issued by the Competent Authority of the exporting country or a certifying official approved by the importing country. When the imported molluscs are going to be stored for a short period before consumption, the containment tank should be isolated from the local environment (e.g., in quarantine) to avoid the potential introduction of the pathogen.

3.1.2.1.6 Temporal trends

For the last fifteen years, the prevalence of B. ostreae has remained stable in France and Spain.

3.1.2.1.7 Other host species

See Section 3.1.2.1.2, above.

References

3.1.2.2 Marteiliosis (Marteilla refringens)

3.1.2.2.1 Description of agent

Marteilla refringens is currently classified as a member of the Phylum Paramyxea (Berthe et al., 2000). The parasite is 5–8 µm in size in the early stages and may reach up to 40 µm during sporulation. The cytoplasm of the cells stain basophilic and the nucleus is eosinophilic. The secondary cells or sporoblasts are surrounded by a bright halo (colour may vary slightly with the stain used). Although the sequence of SS rRNA gene does not allow discrimination among *Marteilla* isolates (Berthe et al., 2000), it is possible to find genetic polymorphisms in the ITS region linked to the host shellfish species, oysters and mussels (Le Roux et al., 2001). Based on RFLP of the parasite internal transcriber spacer –1 (ITS-1) PCR products, Le Roux et al. (2001) defined the existence of two *Marteilla* profiles: an M type found in the mussel and an O type found in the flat oyster. These types were always associated with the same molluscan species and were seldom found in another species. The authors suggested the existence of two *Marteilla* species in Europe: *M. maurini* (not notifiable pathogen) infecting mussels and *M. refringens* (notifiable pathogen) infecting oysters. This would indicate that mussel movements would not be affected by the legal regulations of the notifiable diseases.

3.1.2.2.2 Geographical distribution

Currently, *Marteilla refringens* has been found in France, Greece, Italy, Morocco, Portugal, and Spain.

3.1.2.2.3 Short description of clinical signs

Marteilla refringens develops mainly in the epithelia of the digestive gland (digestive tubules, stomach, and intestine) where it produces a discolouration. It causes cessation of growth, loss of tissue condition, and emaciation due to exhaustion of glycogen reserves.

3.1.2.2.4 Indications of impact/severity at stock level

M. refringens has caused serious and recurring mortalities, with a significant negative impact on the European flat oyster industry. Mortality appears to be related to the sporulation of the parasite. Earlier stages occur in the epithelia of the palps, stomach, digestive ducts, and possibly the gills.

3.1.2.2.5 Control/preventive measures

Importation of molluscs should occur only from a country where no outbreak of disease caused by *M. refringens* has occurred for at least the previous two years and no *M. refringens* has been detected in any mollusc tested during an official health surveillance programme, using the procedures described in the OIE Manual, for a period of at least two years.

When the imported molluscs are to be immersed in local waters, the Competent Authority of the importing country should require that the consignment be accompanied by an international aquatic animal health certificate issued by the Competent Authority of the exporting country or a certifying official approved by the importing country. When the imported molluscs are going to be stored for a short period before consumption, the containment tank should be isolated from the local environment (e.g., in quarantine) to avoid the potential introduction of different strains of the pathogen. This document must certify, on the basis of an official mollusc health surveillance scheme comprising inspection and laboratory tests on susceptible host species conducted according to the procedures described in the Manual of the OIE, whether or not the place of harvest of the consignment is a country officially declared marteiliosis-free. If the place of harvest of the consignment is not a country officially declared marteiliosis-free, the certificate must state whether the place of harvest of the consignment is a zone or an aquaculture establishment officially declared marteiliosis-free.

3.1.2.2.6 Temporal trends

Due to the trends in water temperature, the situations in France and Spain are totally different. Whilst in France there is a clear seasonality, this does not apply to Spain. The prevalence of marteiliosis has remained more or less stable in France, whereas the disease has almost disappeared in Spain.

3.1.2.2.7 Other host species

M. refringens has been recorded from mussels (*Mytilus edulis*), cockles (*Cardium edule*), American oyster (only a single case; Renault et al., 1995), *Ostrea (= Tostrea) chilensis*, and Australian flat oyster (experimental infection). Putative other *Marteilla* species have been described from Pacific oyster (Montes et al., 1998) and Calico scallop (*Argopecten gibbus*), mussels (*M. edulis* and *M. galloprovincialis*) from the Atlantic coasts of Spain and France, and from the Persian Gulf (Comps et al., 1981), and *Saccostrea (= Crassostrea) cucullata* from the Persian Gulf (Comps, 1976), as well as from *Scrobicularia piperata* in France (Comps, 1985). However, due to the near impossibility to distinguish between these marteilias, the identification of these species remains to be resolved (Bowers and McGladdery, 2003).

References

3.2 **Crassostrea species**

3.2.1 **Viral diseases**

3.2.1.1 **Herpesvirus**

3.2.1.1.1 **Description of agent**

Herpes-like virus infections in Pacific oysters are caused by viruses presenting morphological features, cellular locations, and size ranges characteristic of virions belonging to the Herpesviridae family. The virogenesis begins in the nucleus of infected cells where capsids and nucleocapsids appear. Then virions pass into the cytoplasm and are released at the cell surface or by cytolysis. The diameter of enveloped virus particles is approximately 120 nm.

Virus particles have been purified from fresh infected C. gigas larvae. DNA has been extracted from purified virions (Le Deuff and Renault, 1999), and the viral genome sequenced. The overall genome structure is: TR\(_L\) - U\(_L\) - IR\(_L\) - X - IR\(_S\) - U\(_S\) - TR\(_S\) with a 207439 bp total genome size. TR\(_L\) and IR\(_L\) (7584 bp) are inverted repeats flanking a unique region (U\(_L\), 167843 bp). TR\(_S\) and IR\(_S\) (9774 bp) are inverted repeats flanking a unique region (U\(_S\), 33770 bp), and X (1510 bp) is located between IR\(_L\) and IR\(_S\). A similar genome structure has evolved independently in certain vertebrate herpesviruses (e.g., herpes simplex virus and human cytomegalovirus). The presence of several isomers described in the OsHV-1 genome is also a feature reported in vertebrate herpesvirus genomes.

The sequence data demonstrate that the Ostreid Herpes Virus type 1 (OsHV-1) is not closely related to herpesviruses with vertebrate hosts (including fish). Amino acid sequence comparisons failed to identify a single protein which has homologues only in other herpesviruses. Several OsHV-1 proteins have homologues that are distributed widely in nature (e.g., DNA polymerase), but these are no more closely related to homologues in other herpesviruses than to homologues in other organisms. However, a genetic indication of a common origin between OsHV-1 and vertebrate herpesviruses resides with the ATPase subunit of the terminase. Homologous genes are present in all herpesviruses, and the only non-herpesvirus counterparts are specified by T4 and related bacteriophages. The T4 and OsHV-1 genes are unspliced, whereas those in herpesviruses of mammals and birds contain one intron and those in herpesviruses of fish and amphibians contain two introns.

OsHV-1 is the sole recognized viral disease of Pacific oysters in Europe. So far, herpes-like viruses have been reported from nine different bivalve species (see Section 3.1.1.1.7, above) around the world on the basis of transmission electron microscopy and molecular techniques. The number of host species seems to be still increasing.

Recent data (Arzul et al., 2001a, 2001b) show that OsHV-1 can infect several bivalve species. This contrasts with vertebrate herpesviruses, which are generally confined to a single species in nature. Consequently, the true host of OsHV-1 is unknown. The apparent loss of several gene functions in OsHV-1 prompts the speculation that this may have promoted interspecies transmission in the context of introduction of non-native bivalve species and the use of modern aquaculture techniques. It is possible that the parental virus still resides in its natural host.

3.2.1.1.2 **Geographical distribution**

In 1991, viruses interpreted as belonging to the Herpesviridae were associated with high mortalities of hatchery-reared larval Crassostrea gigas in France (Nicolas et al., 1992) and in New Zealand (Hine et al., 1992). Since 1992 and 1993, sporadic high mortalities of larval and juvenile C. gigas have been regularly observed in some commercial French hatcheries. They occur each summer in association with a herpes-like virus (Renault et al., 1994b). Since 1993, sporadic high mortalities have also occurred in some C. gigas spat cultured in several French locations (Renault et al., 1994a, 1994b). Replication of herpes-like viruses was also described in larval Manila clams and scallops (P. maximus) in France (Renault, 1998; Arzul et al., 2001a, 2001b; Renault et al., 2001a, 2001b).
PCR was used to investigate the presence of OsHV-1 DNA in larvae of several bivalve species from different geographical origins in Europe. Positive samples were observed in several hatcheries from three different European countries (France, Spain, and the United Kingdom).

Herpes-like virus infections in bivalves seem to be ubiquitous and are associated with substantial mortalities in hatcheries.

3.2.1.1.3 Short description of clinical signs

Infected larvae show a reduction in feeding and swimming a few days after spawning. Significant mortalities occur by Day 6, with peak of mortality (80–100 %) by Day 8 to Day 12 in most affected batches. Moribund larvae show a less extended velum and detached parts of this velum are often observed free in water. High mortalities occur in spat during summer periods, with 80–90 % mortality occurring within a few days.

3.2.1.1.4 Indications of impact/severity at stock level

In 2000, PCR permitted the detection of herpes-like viral infection in Pacific oyster larvae from the field (Arcachon Bay, France). This is the first record of a herpes-like infection of oyster larvae from natural spawning.

3.2.1.1.5 Control/preventive measures

According to the OIE International Aquatic Animal Health Code, OsHV-1 infection is not a notifiable disease. However, the widespread distribution of herpes-like viruses in marine bivalve species may cause serious problems for marine aquaculture, especially hatcheries.

The availability of sensitive and reliable PCR techniques (Renault and Lipart, 1998; Renault et al., 2000) to detect OsHV-1 DNA in less than 24 hours may be useful to manage larvae and juveniles reared in commercial hatcheries and nurseries. The detection of viral DNA by PCR in bivalves presenting mortalities may help to avoid the spread of viral infections among broodstocks.

3.2.1.1.6 Temporal trends

During the period 1998–2002, herpes-like viruses were reported from an increasing number of larval bivalve species around the world, especially in Europe: C. gigas and Manila clams in France in 1997, and in Spain and the United Kingdom in 1999; carpet shell clams in France in 1999; and scallops (P. maximus) in France in 2000.

3.2.1.1.7 Other host species

See Section 3.1.1.1.7, above.

References

3.2.2 Parasitic diseases

3.2.2.1 Perkinosiosis (Perkinsus marinus)

3.2.2.1.1 Description of agent

Perkinsus marinus (= Labyrinthomyxa marina = Dermocystidium marinus) infects American oysters (C. virginica). It is currently classified as a member of the Phylum Apicomplexa, however, genetic sequencing places it closer to the dinoflagellates (Mackin et al., 1950; Goggin and Barker, 1993; Reece et al., 1997).
Unicellular trophont (also termed trophozoite and merozoite) stages (4–12 µm) are often found inside haemocytes, where they survive, proliferate by schizogony, and are distributed throughout the oyster. Trophonts are characterized by a single vacuole containing a vacuoplast, which is refractile at the light microscope level. Multicellular schizont (15–45 µm) stages may also be intracellular or encapsulated by haemocytes. All stages found in oysters appear to be infective. Transmission is direct; infection occurs through the digestive tract and external epithelia. A zoospore stage can be obtained in culture, but its role in transmission has not been demonstrated (Perkins, 1976).

3.2.2.1.2 Geographical distribution

The parasite is found along the east coast of the United States from Maine to Florida and around the Gulf of Mexico to Mexico and Venezuela. It has also been reported from Jamaica, Puerto Rico, Cuba, and Brazil, and was apparently introduced to the Pacific in Hawaii, USA (Andrews, 1988).

3.2.2.1.3 Short description of clinical signs

The disease is associated with loss of tissue condition and inhibition of shell growth; however, these are not unique to Perkinsiosis (Mackin, 1951).

3.2.2.1.4 Indications of impact/severity at stock level

Mortalities range from 5–30 % during the first year of an epizootic, and total from 60–80 % by the end of the second year. Chronic mortalities of 50 % annually are reported from enzootic regions. Fecundity is reduced in oysters with advanced infections (Ford and Tripp, 1996).

3.2.2.1.5 Control/preventive measures

Oysters from an enzootic area should not be introduced to an area where the pathogen is absent. Oysters should be maintained at reduced salinities (<15 ppt). If final conditioning at higher salinity is needed for market, this should be done as late in the growing season as possible to avoid the acquisition and development of infections. It generally takes two years before serious mortalities occur; therefore, early harvesting of oysters will avoid considerable losses (Andrews and Ray, 1988). Uninfected hatchery-produced seed deployed in late summer can avoid serious infection until the following summer and can be harvested that autumn with little or no mortality. Selective breeding has produced strains with modestly improved survival. Particle filtration (1 µm filters) and UV irradiation of water coming into hatcheries or nurseries can eliminate infective stages (Ford et al., 2001).

3.2.2.1.6 Temporal trends

After a major range extension into the northeastern United States in the early 1990s, associated with a warming trend, *P. marinus* is now well established in this new range (Ford, 1996). The parasite is inhibited by low temperature and salinity, and thus is highly influenced by local conditions (Burreson and Ragone Calvo, 1996). There have been no major changes in distribution or prevalence in the past five years.

3.2.2.1.7 Other host species

DNA analysis indicates that *P. marinus* can infect clam species (Baltic clam (*Macoma balthica*), *M. mitchelli* and hard-shell clam (*Mercenaria mercenaria*) (Coss et al., 2001)).

References

3.2.2.2 Haplosporidiosis (Haplosporidium nelsoni)

3.2.2.2.1 Description of agent

Haplosporidium (= Minchinia) nelsoni, Phylum Haplosporida, causes MSX disease in the American oyster (C. virginica) (Haskin et al., 1966). It is present extracellularly, mostly as plasmodia in the tissues of infected oysters. Production of spore stages occurs primarily in juvenile oysters (Barber et al., 1991; Burreson, 1994). Plasmodia are from 5–50 µm in diameter, depending on the number and size of nuclei they contain (Perkins, 1968). Nuclei are spherical, 1.5–3 µm in diameter with a peripheral endosome, or elongated (up to 7.5 µm). During sporulation, plasmodia develop into sporocysts, with spore walls forming around each nucleus. Spores are approximately 5.5 µm × 7.5 µm, ooperculated, and have a cap with an overhanging lid.

Initial infections occur in the gill epithelium. Parasites multiply along the basal lamina of the epithelium and eventually break through into the circulatory system, where they are circulated throughout the oyster. Spores, when produced, are formed only in the epithelium of the digestive diverticula. The mode of transmission is unknown (Haskin and Andrews, 1988).

3.2.2.2.2 Geographical distribution

Haplosporidium nelsoni is found along the east coast of the United States from Maine to Florida in C. virginica. Persistent epizootics with high mortality have been restricted to the mid-Atlantic states and New England (Ford and Tripp, 1996). The parasite is present in Korea, Japan, the west coast of the United States, and possibly France in the Pacific oyster, C. gigas, where it is rare and has not caused noticeable mortality (Kern, 1976; Burreson et al., 2000; Renault et al., 2000). In 2002, H. nelsoni associated with mortality was reported from C. virginica in the Bras d’Or Lakes Region of Nova Scotia. This represented the first report of the parasite in Canada, and its most northerly outbreak to date.

3.2.2.2.3 Short description of clinical signs

The disease is associated with loss of tissue condition and inhibition of shell growth; however, these are not unique to Haplosporidian-caused diseases (Farley, 1968).

3.2.2.2.4 Indications of impact/severity at stock level

Haplosporidium nelsoni causes annual mortalities of up to 90 % during an initial outbreak and chronic losses of 50 % per year thereafter, with reductions in shell growth, meat quality, and reproductive capabilities in survivors. Oyster production in Chesapeake and Delaware Bays has been severely depressed since the appearance of H. nelsoni in the late 1950s (Ford and Tripp, 1996). An outbreak in Long Island Sound in 1997–1998 also caused heavy losses.

3.2.2.2.5 Control/preventive measures

Selective breeding has been successful in producing highly resistant strains of oysters (Ford and Tripp, 1996). These are useful when hatchery-produced seed are economically practical. Development of resistance in the natural population is reported in Delaware Bay and parts of lower Chesapeake Bay, and resistance appears to be developing in Long Island Sound. Management strategies include maintaining oysters at reduced salinities (< 15 ppt) as long as possible. If final conditioning at higher salinity is needed for market, the conditioning should be done late in the season to avoid the major early-summer infection period (Ford and Haskin, 1988). Immersion of oysters at ≤ 10 ppt salinity for 2–3 weeks at ≥ 20 °C or more should eliminate the parasite from infected oysters (Ford, 1985). Particle filtration (1 µm cartridge filter) and UV irradiation will eliminate infective stages from water coming into hatcheries or nurseries (Ford et al., 2001). Although direct transmission has not been demonstrated, it should be avoided to introduce oysters, especially juveniles that may contain spores, from an enzootic area to an area where the pathogen is not present.

3.2.2.2.6 Temporal trends

An outbreak of H. nelsoni-caused disease occurred in Long Island Sound in 1997–1998, causing heavy losses (Sunila et al., 1999). This was the first such reported, large-scale epizootic in this water body, although there is anecdotal evidence that the parasite caused mortalities in the Sound in the mid-1980s. The reason for the outbreak is not known. In 2002, a localized mortality caused by H. nelsoni was reported in the Bras d’Or Lakes Region of Nova Scotia. This represented the first report of the parasite in Canada, and its most northerly outbreak to date. It has become clear over the past five years that the continued low prevalence of H. nelsoni in Delaware Bay (where the first outbreak was discovered in 1957) is not due to the absence of the parasite, but to the development of a very high level of resistance in the wild population.

3.2.2.2.7 Other host species

Haplosporidium nelsoni infects the Pacific oyster in Korea, Japan, the west coast of the United States, and possibly, France; however, prevalences are typically very low (< 2 %) and not associated with measurable mortality (Kern, 1976; Burreson et al., 2000; Renault et al., 2000; Kamaishi and Yoshinaga, 2002).
3.2.2.3 Haplosporidiosis (Haplosporidium costale)

3.2.2.3.1 Description of agent

Haplosporidium costale (= Minchinia costalis), Phylum Haplosporidia, infects the American oyster (C. virginica) (Wood and Andrews, 1962). It is found extracellularly as both plasmodial and spore stages in oysters (Perkins, 1969). Plasmodia are typically < 10 µm in diameter, and nuclei average about 1.6 µm in diameter. During sporulation, plasmodia develop into sporocysts, with spore walls forming around each nucleus. Spores are approximately 2.6 µm × 3.1 µm, operculate, and have a cap with an overhanging lid. Sporulation is common and occurs in all tissues except the epithelia. Plasmodia, nuclei, and spores of H. costale are smaller than those of H. nelsoni. The mode of transmission is unknown.

3.2.2.3.2 Geographical distribution

Infected oysters have been reported from Maine to the mouth of Chesapeake Bay in locations where salinities are > 25 ppt. Prevalence is low in most areas; associated mortalities, although rare, have been reported in Massachusetts and Virginia. In 2002, during the intense surveillance that followed the first report of H. nelsoni in Canada, H. costale was detected in several oysters on the north shore of Cape Breton and in the Gulf of St. Lawrence (OIE, 2003). This marks the first report of H. costale in Canada.

3.2.2.3.3 Short description of clinical signs

H. costale infections inhibit oyster growth, although this is a non-specific symptom (Andrews and Castagna, 1978).

3.2.2.3.4 Indications of impact/severity at stock level

H. costale inhibits the growth of infected oysters and kills them one to two months after infections become patent. The parasite can kill 20–50% of affected stocks annually (Ford and Tripp, 1996).

3.2.2.3.5 Control/preventive measures

Maintaining oysters at salinities < 25 ppt should minimize the acquisition of new infections. Transfer of infected oysters to salinities < 25 ppt is likely to eliminate, or at least control, the proliferation of parasites in infected oysters (Ford and Tripp, 1996). Particle filtration (1 µm filters) and UV irradiation of water coming into hatcheries or nurseries should eliminate infective stages, as they do for the related pathogen, H. nelsoni.

3.2.2.3.6 Temporal trends

Infections of H. costale seem to be sporadic, or at least sporadically detected, and associated with mortality.
< 20 %. Recent examination of tissue slides with a DNA probe has revealed H. costale infection, and sporulation, in the autumn in both Long Island Sound and coastal Virginia (Stokes and Burreson, 2001; Sunila et al., 2002). Previously, it was thought that histologically detectable infections were present only in spring and early summer (Andrews and Castagna, 1978). In 2002, during the intense surveillance that followed the first report of H. nelsoni in Canada, H. costale was detected in several oysters on the north shore of Cape Breton and in the Gulf of St. Lawrence (OIE, 2003). The infections were light and without evidence of pathology. This marks the first report of H. costale in Canada.

References

3.2.2.4 Mikrocytosis (Denman Island Disease) (Mikrocytos mackini)

3.2.2.4.1 Description of agent
Mikrocytos mackini is a small (2–3 µm diameter), amitochondriate, intracellular, protistan parasite of unknown taxonomic affiliation that causes mikrocytosis, commonly known as Denman Island disease, in oysters (Farley et al., 1988; Hine et al., 2001). The disease was first detected in Pacific oysters in British Columbia, Canada in 1960 (Quayle, 1961, 1982).

3.2.2.4.2 Geographical distribution
Mikrocytos mackini is reported from the west coast of Canada, where it is probably ubiquitous throughout the Strait of Georgia and confined to other specific localities around Vancouver Island. Recently, the parasite was detected in a few old oysters from two relic populations in northern Washington State, USA.

3.2.2.4.3 Short description of clinical signs
Focal green to yellow pustules or abscess-like lesions up to 5 mm in diameter occur within the body wall, on the surface of the labial palps or mantle, or in the adductor muscle. A brown scar often occurs on the shell, adjacent to abscess on the mantle surface. These lesions are not unique to mikrocytosis. The pustules are the result of haemocyte infiltration and tissue necrosis at the sites of intracellular infection of M. mackini in vascular connective tissue cells, heart and adductor muscle myocytes and haemocytes within the lesions (Hervio et al., 1996). In the field, severe infections appear to be restricted to older oysters (over two years old). However, small juvenile oysters (seed, about 1 cm in shell length) were susceptible to infection when challenged by bath exposure in the laboratory.

3.2.2.4.4 Indications of impact/severity at stock level
Lesions and mortalities occur predominantly in April and May following a three- to four-month period when water temperatures are less than 10 °C (Bower and Meyer, 1999). Mortality due to Denman Island disease is most significant in older oysters at low tide levels. Over a period of thirty years, the prevalence of mikrocytosis in older oysters on one beach has varied between 10–40 %. Approximately 10 % of infected C. gigas appear to recover. In most cases, mortalities are not significant to the oyster culture industry within the enzootic area because oysters are normally cultured and marked using methods that circumvent the disease. However, in addition to potential losses due to mortalities, impact to the industry occurs in loss of export markets for seed (stock for grow-out), possible rejection of product at the shucking plant, and increased production costs arising from the implementation of varying degrees of management practices to minimize disease impact.

3.2.2.4.5 Control/preventive measures
The effect of the disease on oyster populations in enzootic areas can be reduced to a manageable level by harvesting or moving large oysters to locations high in the intertidal zone prior to March and not planting oysters at lower tide levels before June (Bower, 1988). Seed stock for hanging culture should not be stored on the beach in enzootic areas between March and June. Oysters from infected areas (currently or historically) should not be moved to areas where mikrocytosis has not been recorded.

3.2.2.4.6 Temporal trends
Since the early 1990s, losses due to mikrocytosis in enzootic areas have been insignificant. This trend can be attributed to current oyster culture practices of remote setting of hatchery-produced eyed larvae, the use of
hanging culture techniques, and the trend towards short production cycles. The detection of *M. mackini* at new locations (i.e., in northern Washington State in 2002) was attributed to the screening of relic oyster populations and not indicative of the spread of the disease.

3.2.2.4.7 Other host species

In addition to the usual host, *C. gigas*, other oysters (e.g., American oyster, European flat oyster, and *Ostrea conchaphila*) are susceptible to infection and the resulting disease. *C. gigas* seemed to be more resistant to the disease than these other species of oysters when challenged experimentally under laboratory and field conditions (Bower et al., 1997).

References

3.2.3 Diseases of unknown aetiology

3.2.3.1 Juvenile Oyster Disease (JOD)

3.2.3.1.1 Description of agent

The aetiological agent of Juvenile Oyster Disease is unknown, but bacterial involvement is strongly indicated (Lee et al., 1996; Paillard et al., 1996; Boettcher et al., 1999, 2000). The disease primarily affects cultured American oysters (*C. virginica*) during their first summer of growth.

3.2.3.1.2 Geographical distribution

Major outbreaks have been reported from New York to Maine (USA), with few or no reports from more southern sites (Bricelj et al., 1992; Barber et al., 1996). A similar syndrome has been reported in *C. virginica* experimentally kept in a French hatchery (Renault et al., 2002).

3.2.3.1.3 Short description of clinical signs

Oysters affected by JOD exhibit two symptoms: 1) extreme cupping of the lower valve and loss of the growing edge of the upper valve, leaving a band of exposed inner shell on the lower valve; and 2) secretion of a conchinol layer, on both valves, that surrounds soft tissues, which retract well into the shell cavity. The conchinol layer is raised into a ridge at the periphery of the mantle, resulting in the appearance of a distinct “brown ring” on the shells of affected oysters. The conchinol layer frequently disrupts the adductor muscle attachment, causing the soft tissues to fall out of the shell (Ford and Borrero, 2001).

3.2.3.1.4 Indications of impact/severity at stock level

Mortalities of up to 90 % occur in animals < 25 mm; larger juveniles show shell deposit symptoms, but have much lower mortalities (Ford and Borrero, 2001).

3.2.3.1.5 Control/preventive measures

Selective breeding has produced oyster strains with significantly better survival than unselected controls (Barber et al., 1998; Lewis et al., 1996). Additional control measures include early production and
deployment of juveniles so that they reach the critical 25 mm size “threshold” before the onset of disease during mid-summer. Decreasing density in trays and bags, increasing mesh size, and increasing flow rate through upwellers have all proven effective in reducing losses (Ford and Borrero, 2001).

3.2.3.1.6 Temporal trends

For nearly ten years, JOD was a major impediment to oyster aquaculture in the northeastern United States, but the prevalence of the disease has diminished significantly since about 1997. A low prevalence of JOD symptoms can still be found in a New York aquaculture facility that experienced very heavy losses in the early 1990s, but losses are no longer economically significant. The only recent outbreaks have occurred in Maine.

References

3.3 Other mollusc species

3.3.1 Parasitic diseases

3.3.1.1 QPX (Quahog Parasite X)

3.3.1.1.1 Description of agent

QPX is a member of the Labyrinthulomycota that infects the hard-shell clam (Mercenaria mercenaria) (Ragan et al., 2000). It is probably an opportunistic, facultative pathogen that primarily affects cultured stocks. Thalli, ranging from about 2 µm to 20 µm in diameter, are usually the most common forms found in clam tissues (Whyte et al., 1994; Ragone Calvo et al., 1998). Larger (10–48 µm) cells (sporangia) each contain 20 to 40 endospores with diameters of 2–5 µm. The parasite is found most commonly in mantle and gill tissues.

3.3.1.1.2 Geographical distribution

QPX is reported from the east coast of Canada to Virginia, on the east coast of the United States (Smolowitz et al., 1998; Ragone Calvo et al., 1998; MacCallum and McGladery, 2000).

3.3.1.1.3 Short description of clinical signs

Heavy lesions appear as a swollen mantle edge or nodules on the mantle. Chipping of the shell edge may occur in clams living in sandy sediment. Infected clams also experience reduced shell growth and loss of tissue condition (Smolowitz et al., 1998).

3.3.1.1.4 Indications of impact/severity at stock level

Mortalities of up to 90 % have been reported in susceptible stocks, although some of the mortality may not be directly caused by QPX, but by unfavourable conditions that also facilitate infection by the pathogen (Ford et al., 2002). The disease has been a serious impediment to clam culture in some sites in Massachusetts, although the problems appear to be at least partly related to poor husbandry (Smolowitz et al., 1998).

3.3.1.1.5 Control/preventive measures

QPX has never been found in hatchery seed and all evidence indicates that clams become infected after planting (Ford et al., 1997). There is strong evidence, however, that southern stocks planted in northern regions are more susceptible to QPX. Therefore, the use of local stocks is recommended. High-density plantings also seem to favour the parasite, so reducing planting density is also recommended (Ford et al., 2002).
3.3.1.1.6 Temporal trends

The parasite has been known since the late 1950s, when it was found in Canada’s Prince Edward Island (Drinnan and Henderson, 1963). Recent epizootics in the United States appear to be associated with the increase in hard clam aquaculture, poor animal husbandry, and the use of southern stocks, which grow faster than northern stocks, but also appear to be more susceptible to QPX infection.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Price (Danish Kroner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>Alien Species Alert: Rapana venosa (veined whelk)</td>
<td>150</td>
</tr>
<tr>
<td>261</td>
<td>Report of the ICES Advisory Committee on Fishery Management, 2004 (Parts 1–3). 975 pp.</td>
<td>430</td>
</tr>
<tr>
<td>260</td>
<td>Stockholm 1999 Centenary Lectures. 48 pp.</td>
<td>170</td>
</tr>
<tr>
<td>259</td>
<td>The 2002/2003 ICES Annual Ocean Climate Status Summary. 29 pp.</td>
<td>150</td>
</tr>
<tr>
<td>258</td>
<td>Seabirds as Monitors of the Marine Environment. 73 pp.</td>
<td>200</td>
</tr>
<tr>
<td>257</td>
<td>Proceedings of the Baltic Marine Science Conference. 334 pp.</td>
<td>420</td>
</tr>
<tr>
<td>251</td>
<td>The Annual ICES Ocean Climate Status Summary 2001/2002. 27 pp.</td>
<td>180</td>
</tr>
<tr>
<td>250</td>
<td>ICES/GLOBEC Sea-going Workshop for Intercalibration of Plankton Samplers. A compilation of data, metadata and visual material, 2002. 34 pp.</td>
<td>190</td>
</tr>
<tr>
<td>247</td>
<td>Effects of Extraction of Marine Sediments on the Marine Ecosystem. 80 pp.</td>
<td>200</td>
</tr>
<tr>
<td>245</td>
<td>The Annual ICES Ocean Climate Status Summary 2000/2001. 21 pp.</td>
<td>150</td>
</tr>
<tr>
<td>244</td>
<td>Workshop on Gadoid Stocks in the North Sea during the 1960s and 1970s. The Fourth ICES/GLOBEC Backward-Facing Workshop. 55 pp.</td>
<td>160</td>
</tr>
<tr>
<td>240</td>
<td>Report of the Young Scientists Conference on Marine Ecosystem Perspectives. 73 pp.</td>
<td>170</td>
</tr>
<tr>
<td>238</td>
<td>Report on Echo Trace Classification. 107 pp.</td>
<td>200</td>
</tr>
<tr>
<td>237</td>
<td>Seventh Intercomparison Exercise on Trace Metals in Sea Water. 95 pp.</td>
<td>190</td>
</tr>
</tbody>
</table>
Methodology for Target Strength Measurements (With special reference to \textit{in situ} techniques for fish and mikronekton). 59 pp.

Diets of Seabirds and Consequences of Changes in Food Supply. 66 pp.

Tenth ICES Dialogue Meeting (Fisheries and Environment in the Bay of Biscay and Iberian Region: Can the Living Resources Be Better Utilized). 30 pp.

Ballast Water: Ecological and Fisheries Implications. 146 pp.

Guide to the Identification of North Sea Fish Using Premaxillae and Vertebrae. 231 pp (including 300 photographs)

Atlas of North Sea Benthic Infauna. 86 pp. (plus two diskettes containing relevant data)

Seabird/Fish Interactions, with Particular Reference to Seabirds in the North Sea. 87 pp.

Intercalibration Exercise on the Qualitative and Quantitative Analysis of Fatty Acids in Artemia and Marine Samples Used in Mariculture. 30 pp.

These publications may be ordered from: ICES Secretariat, Palægade 2–4, DK-1261 Copenhagen K, Denmark, fax: +45 33 93 42 15, e-mail: info@ices.dk. An invoice including the cost of postage and handling will be sent. Publications are usually dispatched within one week of receipt of payment. Further information about ICES publications, including ordering and payment by credit card, cheques and bank transfer, may be found at: www.ices.dk/pubs.htm.