Annex 4: Manual for the Ageing of Atlantic Eel

Otolith preparation methodologies, age interpretation and image storage

Produced by the participants of the ICES Workshop on Age Reading for European and American Eel 2009

International Council for Exploration of the Sea
April 2009, Copenhagen
Preparation of this document

This publication was prepared by the ICES Workshop on Age Reading of European and American Eel, held in CEMAGREF, Bordeaux, France from 20-24 April 2009. The Workshop was chaired by Françoise Daverat and co-chaired by Russell Poole, Hakan Wickström and John Casselman (not present at the workshop).

This illustrated manual of best practice and otolith images has been designed as a stand-alone document and further information can be found in both the EIFAC 1988 publication on eel age determination (Vollestad, Lecomte-Finiger and Steinmetz, 1988) and the report of the ICES Workshop on Age Reading of European and American Eel, ICES WKAREA, 2009.

This document is a report of an Expert Workshop under the auspices of the International Council for the Exploration of the Sea.

Images contained within the report should not be extracted and/or used for publication without the prior permission of ICES and the creator of the original image.

Contact Address:

International Council for the Exploration of the Sea
H.C. Andersens Boulevard 44-46
DK-1553 Copenhagen V, Denmark
Telephone (+45) 33 38 67 00
Telefax (+45) 33 93 42 15
www.ices.dk info@ices.dk
Manual for the Ageing of Atlantic Eel ... 1

Preparation of this document .. 1

1 Introduction .. 4

2 Glossary .. 4
 2.1 Eel Terms ... 4
 2.2 Otolith Terms ... 6

3 Otolith Extraction from Anguillid Species .. 8

4 Field Data for Age Determination ... 11

5 Otolith Storage and Preparation Protocols .. 12
 5.1 Introduction .. 12
 5.2 Storage Media ... 12
 5.3 Grinding & Polishing Methodology ... 12
 5.3.1 Reagents ... 13
 5.3.2 Equipment .. 13
 5.3.3 Methodology .. 14
 5.3.3.1 Etching .. 15
 5.3.3.2 Staining ... 16
 5.3.4 Advantages ... 16
 5.3.5 Disadvantages .. 16
 5.4 Burning and Cracking Protocol .. 17
 5.4.1 Standard Operating Procedure for burning and cracking of Eel Otoliths .. 17
 5.4.2 Purpose and Scope ... 17
 5.4.3 Principle of the Method .. 17
 5.4.4 Equipment ... 17
 5.4.5 Operational Procedure ... 17
 5.4.6 Safety .. 19
 5.4.7 Variation - Cutting and Burning ... 19
 5.4.7.1 Principle of the Method .. 19
 5.4.7.2 Advantages: ... 19
 5.5 Whole Otolith Clearing – in toto .. 19
 5.5.1 Advantage ... 19
 5.5.2 Disadvantage ... 19

6 Digital Image Capture .. 20
 6.1 Image Format ... 20
 6.2 Colour or Grey Scale .. 20
 6.3 Resolution of picture .. 20
 6.4 Orientation .. 20
 6.5 Magnification ... 21
6.6 Calibration ... 21
6.7 Light... 21

7 Guidelines for interpretation .. 22
 7.1 Reading transect.. 22
 7.2 Zero Band.. 22
 7.3 Annulus identification ... 23
 7.4 Otolith Reading Calendar ... 24

8 Inter-calibration ... 25

9 Image Library .. 25

10 References ... 26

11 Image Library Demonstration Otoliths ... 28
 11.1 Ground, polished and stained otoliths ... 28
 11.2 Comparisons between burn & crack and grinding & polishing 37
 11.3 Burning and cracking ... 39
 11.4 Other demonstration images .. 45
1 Introduction

Eel age determination for Atlantic eel has long been problematic with much debate on both the techniques and the interpretation with relatively few validation studies. Validation is difficult given the terminal nature of ageing with otoliths and also the relatively slow growth and long life cycle often involving different habitats. Ageing using sagittal otoliths, rather than other structures such as scales and opercular bones, appears to be the only viable option for eel. The extraction of eel otoliths was described by Moriarty (1973).

The results obtained using different preparation methods may vary considerably (Moriarty & Steinmetz, 1979; Moriarty, 1983; Berg, 1985; Vøllestad, 1985; Vøllestad & Næsje, 1988; Fontenelle, 1991; Poole & Reynolds, 1996) but few have been validated. The ageing of slow growing eels and the occurrence of supernumerary zones has caused much confusion (Dahl, 1967; Moriarty, 1972, 1983; Deelder, 1981; Poole et al., 1992) although subsequently, the ‘burning and cracking’ method was validated in some situations (Moriarty & Steinmetz, 1979; Moriarty, 1983; Vøllestad & Næsje, 1988; Poole & Reynolds, 1996). Burning and cracking was then recommended by an EIFAC eel age workshop in 1987 as the best option for ageing eels (Vøllestad, Le-comte-Finiger & Steinmetz, 1988), particularly for the slow growing and older specimens (e.g. Vøllestad & Næsje, 1988). There have been many developments since 1988, both in improved otolith preparation techniques, imaging and validations along with the use of eels of known age and chemical marking of otoliths.

Considerable recent improvements have been made to both the technology of otolith preparation, viewing and imagery of otoliths which has led to a better understanding of the determination of age for both species of Atlantic eel. Validation studies have looked at eels of known age from Sweden (Svedang, et al. 1998), marked otoliths, examples of otoliths from eels of known and unknown age prepared by burning and cracking and by grinding and polishing. Studies have also been carried out on a range of other otoliths including burnt and cracked glass eel otoliths for identifying the zero band, from where the continental phase ageing commences.

This manual, while designed as a stand alone document, should be read in conjunction with the report from the ICES Workshop on Age Reading for European and American Eel, 2009, held in Bordeaux.

2 Glossary

2.1 Eel Terms

Eels are quite unlike other fish and consequently come with a specialised jargon (WGEEL, 2008). This section provides a quick introduction and is not intended to be exhaustive.
The life cycle of the European eel. The names of the major life stages are indicated. Spawning and eggs of *Anguilla anguilla* and *A.rostrata* have never been observed in the wild (supplied by Dekker).

<table>
<thead>
<tr>
<th>Atlantic Eel</th>
<th>The collective term Atlantic eel will be used in this report to cover both A. anguilla and A. rostrata where there are no differences. Differences between the species will be indicated by their specific names.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass eel</td>
<td>Young, unpigmented eel, recruiting from the sea into continental waters</td>
</tr>
<tr>
<td>Elver</td>
<td>Young eel, in its 1st year following recruitment from the ocean. The elver stage is sometimes considered to exclude the glass eel stage, but not by everyone. Thus, it is a confusing term.</td>
</tr>
<tr>
<td>Bootlace, fingerling</td>
<td>Intermediate sized eels, approx. 10-25 cm in length. These terms are most often used in relation to stocking. The exact size of the eels may vary considerably. Thus, it is a confusing term.</td>
</tr>
<tr>
<td>Yellow eel (Brown eel)</td>
<td>Life stage resident in continental waters. Often defined as a sedentary phase, but migration within and between rivers, and to and from coastal waters occurs. This phase encompasses the elver and bootlace stages.</td>
</tr>
<tr>
<td>Silver eel</td>
<td>Migratory phase following the yellow eel phase. Eel characterised by darkened back, silvery belly with a clearly contrasting black lateral line and enlarged eyes. Downstream migrating phase, moving towards the sea. This phase mainly occurs in the second half of calendar years, though some are observed throughout the winter and following spring.</td>
</tr>
<tr>
<td>Eel River Basin</td>
<td>“Member States shall identify and define the individual river basins lying within their national territory that constitute natural habitats for the European eel (eel river basins) which may include maritime waters. If appropriate justification is provided, a Member State may designate the whole of its national territory or an existing regional administrative unit as one eel river basin. In defining eel river basins, Member States shall have the maximum possible regard for the administrative arrangements referred to in Article 3 of Directive 2000/60/EC [i.e. River Basin Districts of the Water Framework Directive].” EC No1100/2007.</td>
</tr>
<tr>
<td>River Basin District</td>
<td>The area of land and sea, made up of one or more neighbouring river basins together with their associated surface and groundwaters, transitional and coastal waters, which is identified under Article 3(1) of the Water Framework Directive as the main unit for management of river basins. Term used in relation to the EU Water Framework Directive.</td>
</tr>
<tr>
<td>Stocking</td>
<td>Stocking is the practice of adding fish [eels] to a water body from another source, to supplement existing populations or to create a population where none exists.</td>
</tr>
</tbody>
</table>
2.2 Otolith Terms

(updated from Vøllestad, Lecomte-Finiger & Steinmetz, 1988) and see also Figure 2.1

Annual zone: Structural feature of the otolith corresponding to the growth during a complete year of life

Annulus: The theoretical boundary between two successive annual zones

Burning & cracking: The traditional otolith preparation of burning and cracking has been improved by cutting the otolith before burning. Both methods are covered in this manual by the term “Burning and cracking”.

Frontal Plane: The flat cut, or cracked, face of a transverse section of an otolith

Growth Check: A boundary between two growth zones, not necessarily annual (also see supernumerary)

Hyaline: See translucent.

Nucleus: The hypothetical or real origin of the otolith; synonymous with focus or core

Opaque zone: A zone that inhibits the passage of light. In transmitted light opaque zones appear dark and in reflected light they appear bright (white)

Radius: A determined measurement from a focus to a specific point

Sagittal Plane: The view of the otolith when lying flat, convex side up. Most grinding takes place on the sagittal plane.

Supernumerary: A growth mark or check not accepted for annual age determination, also referred to as a growth check or false annulus.

Translucent zone: Previously known as the hyaline zone. A zone that allows the passage of light. In transmitted light translucent zones appear bright, in reflected light they appear dark.

Validation: The confirmation of the temporal meaning of a growth increment. Analogous to determining the accuracy of age determination; used in reference to true age.

Verification: Determining the precision (reproducibility) of age determination, used in reference to the precision of estimated age.

Zero band: The first growth check outside the nucleus from where continental age determination commences (~170µm radius from centre).
Figure 2.1. Illustrations of sagittal and frontal plane views of otoliths indicating the glossary terminology. The Age 0 ring is equivalent to the zero band referred to in this report. The anterior and posterior regions of the otolith above are in accordance with the orientation of the eel (from Christine Gazeau).

Also useful: http://www.cmima.csic.es/aforo/index.jsp
3 Otolith Extraction from Anguillid Species

The method described here is an adaptation of that described by Moriarty (1973) and is just one approach, with many researchers using different variations. This technique minimises loss and damage to otoliths and is a quick, clean and efficient method.

A primary transverse incision is made behind the eye in two phases using a scissors; first cutting the skin and flesh and second penetrating the cranium through to the roof of the mouth and providing access to the cranial cavity (Figure 3.1). This reduces cranial compression whilst also lowering the risk of otolith shearing observed in other methods.

Figure 3.1: Transverse cuts behind the eyes through the skin and flesh (top) and through the skull (bottom) leaving the lower jaw still intact.
Gripping the eel’s lower jaw in the left hand, three secondary longitudinal cuts are then made with a sharp pointed scissors along the dorsal surface of the cranium, perpendicular to the primary transverse cut, (Figure 3.2). Each cut extends further along the length of the cranium, the extent of which depending upon the individual skull length. The first cut severs the skin, the second cuts through the upper portion of the skull and brain cavity and the third through the lower portion of the skull and brain cavity and roof of the mouth.

Figure 3.2: Longitudinal cuts through the skin and flesh (top) and through the upper and lower skull (bottom) leaving the lower jaw still intact.

The exposed cranial sections can be moved aside using the thumb on the left hand to reveal the otolith lying within the saccculus, one located on each side, (Figure 3.3 & 3.4). Each otolith is found lying behind the brain, one on each side of the base of the cranium. Once extracted, the otolith can be cleaned by rubbing on the back of the left hand with the right forefinger (unless the otolith is to be used for genetics). This extraction method allows sufficient control over the placing of specific cuts thereby avoiding damage and loss of otoliths and may also be performed single-handedly where required keeping the right hand clean for writing, labelling and cleaning otoliths.
Figure 3.3: The brain case separated and showing the location of one of the otoliths.

Figure 3.4: Showing location of otoliths in the head of an eel; the sagittae are extracted for age determination (adapted from Secor et al., 1992; www.cmima.csic.es/aforo/oto-wat.jsp)
4 Field Data for Age Determination

The following field data, where possible should be recorded for each eel otolith and be available along with the image (the image should be saved with the eel unique ID number attached):

- Unique Eel Identification Number
- Location of Capture
- Date of Capture
- Length and weight if available
- Sex
- Habitat type
- Other features – e.g. wild, stocked, pre-grown in culture

It is recommended that age is estimated from each otolith by at least two readers, and preferably three. There are, therefore, two main approaches to providing vital information on the otoliths being processed:

- **Vital information fully available to all readers.**
 In most cases, given the relationship between stress and metabolism and the creation of annual and false check bands within otoliths, it is advisable that the readers have vital information to assist with correct age interpretation – this could save much time and effort if it prevents erroneous interpretation.

- **Selective vital information withheld from all readers.**
 There may be situations when a priori information might bias a reader’s approach to age interpretation and a blind test is strongly recommended (Nielson, 1992). If you have background knowledge of information likely to influence your decision on age you should not partake in the blind test. For example, when ageing otoliths of eels sampled in contaminated versus reference sites, site information should be withheld and otoliths should be processed randomly; otherwise, readers may bias their interpretation of age/growth in accordance with their expectations of results.
5 Otolith Storage and Preparation Protocols

5.1 Introduction

Before extracting and storing otoliths, it is important from the outset to establish the nature of the research being undertaken, and whether or not long-term storage and archiving of material will form a significant part of the work. Where it is not necessary for the material, including otoliths, to be preserved this should be avoided. Where chemical storage of tissue is required, the otoliths should be removed first. The issue of cross contamination between specimens when sampling otoliths is more serious when DNA extraction is envisaged because it is easy to carry small amounts of soft tissue or mucous between specimens unless precautions are taken (instruments are cleaned (wiped) thoroughly between samples). It is also highly likely that sample processing stations will be contaminated by slime and tissues from a number of fish.

Best practice is to extract both sagittal otoliths from each fish. One can then be archived for future use, such as otolith microchemistry, stable isotope analysis or genetics, whilst the other can be used for immediate ageing.

There are two main otolith preparation protocols for the Atlantic species of eel, *A. anguilla* and *A. rostrata*, currently in use. Those are, with slight variations between institutes, the burning and cracking (including cutting before burning), and the grinding and polishing (and in most cases staining) protocols. Clearing whole otoliths “in toto” has limited use for small eels of young age.

5.2 Storage Media

The WKAREA 2009 concluded that dry storage is the best medium in which to retain otoliths. Advantages and disadvantages of dry storage and alternative methods considered can be referred to in the workshop report. Consequently, it is recommended that paper envelopes are utilized in burn and crack (*cut and burn*) techniques, whilst microtubules such as eppendorfs are used for grinding and polishing, where microchemistry or genetic analysis is anticipated. It is important that otoliths are fully dry before storing in eppendorfs to avoid deterioration due to damp.

Care should be taken to avoid physically damaging otoliths due to stacking of envelopes and binding tightly with rubber bands. Ensure eppendorfs are not damaged in, for example, postage.

Care should be taken to avoid using open micro-titre type trays for storage of eel otoliths. There is a danger of individual otoliths dropping into the wrong cell, or inadvertently migrating between cells during transit.

5.3 Grinding & Polishing Methodology

This procedure provides a safe and reliable method for processing eel otoliths and assessing the age of the eel by counting the annuli illuminated as a result of the grinding and polishing. Figure 5.1 gives an outline of a possible approach. The right otolith is chosen for consistency, although for eel this is not critical.
5.3.1 Reagents

A variety of chemical reagents are used during the different phases of preparation and reading. Most commonly wax, epoxy resin, Crystal bond or Loctite Branded Super glue are used as the adhesive. EDTA, Hydrochloric acid and Acetic acid are used in the etching process, whilst Toluidene Blue or Neutral red stains are used in the staining process. Alumina and diamond powder pastes may be used to polish the otolith following grinding.

5.3.2 Equipment

Stereo dissecting microscope (with mounted camera and image capture and analysis software), glass microscope slides, fine point forceps, mounted needles, slide container box, self adhesive grinding papers (600, 800, and 1200 grade) (Figure 5.1).
5.3.3 Methodology

This preparation method involves the initial mounting/embedding of an otolith in a convex position onto the end of a glass slide (Figure 5.3). The bottom and sides of the otolith are affixed to the slide using some form of high strength adhesive which is then lightly drawn over the dorsal surface of the otolith to fill in tiny crevices on the surface of the structure and produce a fuller bond to the slide.

The otolith is examined under a stereo dissecting microscope, at as low a magnification as possible, using a variety of light types including transmitted, reflected or polarized. Annuli are rarely sufficiently visualized at this point and as such the otolith is ground along the sagittal or transverse plane depending on the orientation during embedding. The otolith is ground until the centre of the nucleus is reached. This can be performed manually, or by using a grinding wheel in conjunction with silicon carbide wet-dry sandpapers, after which the otolith is then polished using a decreasing range in coarseness (1200-4000 grit) of silicon carbide wet-dry sandpapers, jewellery cloths or pastes made from aluminium or diamond powder (Figure 5.4).

From this point onwards a variety of different techniques involving etching and staining are employed to help improve visualization of annuli which are then counted, bearing in mind that translucent zones (winter) are bright, and opaque zones (summer) are dark, when the otolith is viewed with transmitted light whilst opaque zones (summer) are bright, and translucent zones (winter) are dark when viewed with reflected light.
5.3.3.1 Etching

A summary protocol for etching is given here, as developed by CEMAGREF (Figure 5.5).

The whole slide preparation is immersed in:-
5% EDTA for 3 mins
or
1% HCl for 1 min.

The otoliths are then stained via the following methods:
5.3.3.2 Staining

A summary protocol for etching is given here, as developed by CEMAGREF (Figure 5.5).

The whole slide preparation is immersed in:-
5% Toluidene blue (smeared), dry over night
or
1% Toluidene blue:-if HCl stained, 30-120 mins.
 if EDTA stained, 5-30 mins.
or
20 ml neutral red solution (3.3g/L). SIGMA*

![Figure 5.5: Protocol for etching and staining in toluidene blue (source: CEMAGREF)](image)

5.3.4 Advantages

The grinding and polishing method (grinding in the sagittal plane) gives a safe and reliable method for preparation of otoliths from eels that are not too old or slow growing. It is the only method that allows marks inserted in the otolith using OTC, strontium or alizarin to be viewed (burning and cracking destroys these marks).

5.3.5 Disadvantages

Grinding and polishing has a tendency towards underestimating the age, especially in older slower growing eels. This may be due to loss of outer rings by over-grinding or because of the shape of older larger otoliths. This could be overcome by grinding in the transverse plane, although this variation is time consuming.
5.4 Burning and Cracking Protocol

5.4.1 Standard Operating Procedure for burning and cracking of Eel Otoliths

Christensen (1964) first reported that eel otoliths could be successfully prepared by burning in a flame and cracking to reveal the annuli on the broken face of the otolith. The preparation of eel otoliths was described by Moriarty (1973) and developed by Hu & Todd (1981) with a more permanent mount made by mounting the otolith in silicone sealant against a glass slide.

The otolith is burnt either before or after cracking. The traditional burning and cracking is described here and the improvement by cutting the otolith first before burning is described as a variation.

Recommendation: Burning and Cracking of Otoliths should be replaced by the cutting and burning variation as described below.

5.4.2 Purpose and Scope

This procedure provides a safe and reliable method for processing and preserving eel otoliths and assessing the age of the eel by counting the annuli highlighted as a result of the burning process.

5.4.3 Principle of the Method

Burning the otolith highlights the winter bands so they can be differentiated between when examined under reflected light. After burning, breaking the otolith in two parts provides a face for reading bands.

5.4.4 Equipment

Glass microscope slides, fine forceps, fine pointers, heavy scalpel with insulated handle for burning, second scalpel for cutting, Bunsen burner/spirit burner, slide container box, syringe and silicone sealant.

5.4.5 Operational Procedure

Eel otoliths, once removed from fish heads, should be cleaned by rubbing gently and placed into your storage medium (scale envelopes, unsealed eppendorf tubes etc.) and left in a warm dry place for several days to dry.

The otolith is placed on a scalpel blade and placed into the blue part of a moderate Bunsen flame for up to 30-60 seconds, by which time they have darkened to a slate grey colour. This will follow initial darkening from light brown to black. It is important that the flame is not too hot as incomplete, or patchy, incineration can occur. [NOTE: Wear safety glasses when burning otoliths]
The otolith is very delicate after being burnt and must be handled with care. It is placed on a glass slide convex side down and pressure is gently placed on both ends of the otolith using the fine pointers and the otolith splits in two along the transverse axis. (see Chapter 2: glossary) Alternatively, the burnt otolith can be placed concave side down and gentle pressure applied to the centre of the otolith, to split it in two parts.

The otolith halves are picked up using a pointer, which has been dipped in a small amount of the sealant and gently mounted in a small bead of silicone sealant that has been placed on a microscope slide, with the prepared reading surface pressed against the slide surface (Figure 5.6). The otolith should be slide sideways into the sealant in order to exclude any trapped air bubbles.

The silicone is left to set for approx. 45-60 minutes before a second bead of silicone sealant is placed on top of the first to seal in the otolith halves and make a permanent mount.

The otoliths are read through the glass of the inverted slide (Figure 5.6) under a stereo microscope using reflected light under magnification between x20 and x50.

Figure 5.6: The cut face of the burnt otolith is mounted in silicone against the glass and the slide is inverted for viewing under reflected light.
5.4.6 Safety

Care should be taken with the gas supply and when using lit Bunsen burners. Care should be taken with the naked flame from the Bunsen burner, as it is not always visible, and a naked flame sign should be placed on the bench beside the Bunsen. The laboratory should be kept well ventilated and laboratory coats and eye glasses should be worn at all times.

5.4.7 Variation - Cutting and Burning

5.4.7.1 Principle of the Method

Cutting the otolith in half across the short axis, through the nucleus which should be visible in the dry otolith, helps to produce a flat surface for examination. Otoliths are removed from the envelope etc. before burning using a fine forceps and placed on a glass microscope slide convex side down. The otoliths are then stuck to the slide with clear Sellotape. A sharp scalpel is then used to cut the otoliths in half along the transverse axis, through the nucleus. Care must be taken to cut through the nucleus of the otolith. After cutting, the otolith halves are burnt and mounted as described above.

5.4.7.2 Advantages:

This variation to the method produces a flat surface along the correct transverse axis for mounting against the glass slide, allowing for consistently higher quality otolith preparation (Graynoth, 1999). This in turn makes the otoliths easier to age. It removes the problems associated with the traditional burning and cracking method, reducing the occurrence of irregular surfaces on the reading plane. Overall it is a more precise method and can result in reduced sample damage. It is recommended that this variation should be considered as a new standard technique.

5.5 Whole Otolith Clearing – in toto

Clearing whole otoliths (in toto) is still used to age young eel populations (Panfili et al. 1994a; Cullen & McCarthy, 2003; Melià et al. 2006).

The whole right and left otoliths are immersed into rosemary essential oil or 96% ethanol (in order to enhance the visualization of the annuli) and read under a binocular microscope with reflected light against a dark background.

Other media used to immerse otoliths were: propandiol, camomile essential oil or less so now, creosote oil.

5.5.1 Advantage

A quick method that is efficient for young eels.

5.5.2 Disadvantage

This method is not appropriate for slow growing eels and it underestimates age of eels older than about 5 years old (Vollestad & Næsje 1988; Panfili et al. 1994b). Care should be taken to observe health and safety aspects of clearing agents.
6 Digital Image Capture

Capture of images of otoliths using digital cameras mounted on microscopes is increasingly being used in both age and growth analysis of eels. It is particularly useful for back-calculated growth analysis as well as an inter-calibration tool for the quality assurance of eel ageing. A standard protocol and data format for image capture has not as yet been developed but it is seen as an important area for development in otolith studies across many species including eel (Pierra et al. 2005). Described here is the more recent experience of participants of the Workshop and some guidelines for current best practice.

6.1 Image Format

Saving images in .tiff file format provides lossless image compression and is therefore recommended. More precisely, 8 bit tiff format is further recommended as it is more universally compatible with general software programmes.

Jpeg is another option providing smaller file size but will result in a lower quality image and can introduce artefacts due to the compression method used. Deterioration over time and with sequential opening also occurs with jpeg files.

An image storage system should be developed linking a unique id between the image file and the associated eel data. A link to a file can be included within a database but caution should be taken to avoid image loss due to file relocation.

6.2 Colour or Grey Scale

Certain preparation or staining techniques benefit from the image being taken in colour. However, for general purpose ageing and growth measurements, clearer contrast and reduced file size grey scale imaging should be used in preference.

6.3 Resolution of picture

Images should be between 500 and not more than 2048 pixels. If the image is in black and white and 8-bit, 256 grey levels is sufficient as the human eye can only differentiate between about 60 shades of grey (Troadec & Benzinou, 2002). If a colour image is captured it should have the same number of pixels and 24-bit.

Printing standards for publishing in scientific journals or good quality reports require 300dpi images.

6.4 Orientation

Try to get the full otolith face in the frame of the image (the whole structure should appear on the picture).

For the sagittal plane section of ground and polished otoliths, keep the same position of the structure in the picture (i.e.: rostrum always on the left end side). This may be more difficult with burnt and cracked otoliths but its good practice to standardise the orientation. This facilitates identifying ring continuity and may benefit future image analysis of morphological features.

If the section is curved and requires multiple focus images for reading, use a composite image of different focal planes.
6.5 Magnification

For an older system where there is no calibration synchronisation between the microscope and the software available, use the same magnification for the whole picture data set.

6.6 Calibration

For new systems, synchronise the calibration of the picture with the magnification of the microscope (parameter: number of pixels per micron). Use click magnification on stereoscopes to facilitate calibration.

6.7 Light

Ground otoliths are generally analysed using transmitted light and burnt and cracked otoliths require reflected light. Light conditions should be adjusted on both microscope and software to achieve the greatest contrast before the image is captured.

Post processing of digitally acquired images should be undertaken with extreme caution to avoid introducing erroneous artefacts in the image.

Using both images and otolith samples to estimate age (to avoid problems with variable focal planes) provides the greatest accuracy and is useful to identify uncertain or unclear structures or images.

In some recent adaptations, a polarising filter is used with transmitted light instead of staining the otolith (D. Evans, pers. comm.) and in Sweden transmitted light is used in combination with differing levels of oblique angled reflected light (Wickström, pers. comm.).

A combination of varying the focus and different levels and types of stain and light achieves the optimum visualisation of the annuli and the best readings of age.
7 Guidelines for interpretation

7.1 Reading transect

Regardless of the plane of view, the reading transect begins from the centre of nucleus to the furthest edge of the otolith. The path of the transect is dependent upon the quality and characteristics of the otolith being aged, but recommendations are made to read along the proximal plane, in the case of burning and cracking, to intersect each annulus at its widest point. In the case of ground and polished otoliths, it is possible that, in order to obtain a complete reading transect, annuli can be traced around the sagittal plane to areas that offer an increased distinction, in order to obtain a complete reading.

7.2 Zero Band

The ageing of the eel for the continental phase, has traditionally commenced from the first clearly marked band outside the nucleus. This 'zero' band is assumed to be the beginning of continental growth in the eel, equivalent to the total length for the glass eel (Moriarty, 1983; Poole et al., 2004). The next annulus is considered to be the end of the first year of growth (Figure 7.1).

For the determination of the continental age of the eel, counting of annuli begins after identification of the zero band, with the following annulus representing the first years winter band in the continental phase, a process considered in more detail within section 6.2 of the ICES WKAREA 2009 report, but has been summarized below:

- The 'zero band' is assumed to be the end of the oceanic/metamorphosis phase and the beginning of continental growth in the eel, equivalent to the total length for the glass eel, resulting in the next annulus to be considered as the end of the first year of growth.

- In the case of ambiguity in the identification of zero bands, the radius from the centre point of the nucleus to the assumed zero band proximity is on average 170µm for *A. anguilla*. In addition, for ground and polished otoliths, the expected diameter of the zero band has an average value of 340µm. In *A. rostrata*, the radius and circumference have average values of 120µm and 240µm respectively.

- Care must be taken to identify check marks which are often observed between the nucleus edge and the zero band, so to define the zero band with confidence.
Figure 7.1: **Upper image:** A burnt and cracked otolith (transverse plane) from *A. anguilla* showing the location of the zero band and first winter annulus.

Lower image: A ground, polished and stained otolith (sagittal plane) from *A. anguilla* showing the location of the zero band and first winter annulus.

7.3 Annulus identification

A year’s growth consists of both translucent (winter growth) and opaque (summer growth) zones. Accurate analysis requires a confident distinction to be made between:

- clearly visible as a bold growth check to be considered an annulus,
- in the case of sagittal plane ground otoliths the growth checks should, in theory, be visibly continuous around the otolith to be annuli
- in the case of burnt and cracked otoliths, the growth checks should be clear and continuous, at least down the inside edge of the otolith
- false annuli are usually of lesser strength to the annuli, are not continuous and/or merge with other checks.
• eel growth is highly variable and therefore it is difficult to predict ‘normal’ patterns of annual growth to facilitate the identification of false annuli. Checks that appear too close to the neighbouring checks may be false annuli and should be treated with caution. For additional information see Graynoth (1999).

The counting of consecutive annuli will provide an estimation of age, provided that check marks are successfully identified and excluded from the final count. The distinction between annulus and check marks are defined as such in the glossary and discussed further in section 6.3 of ICES WKAREA 2009 report.

It is important, but difficult, to identify and discount the inclusion of false annular growth checks, often caused by stress associated with quarantine/marking and tagging of stocked glass eel, periods in aquaculture, or due to natural stresses and growth variability in the wild.

7.4 Otolith Reading Calendar

For both *A. anguilla* & *A. rostrata* the following recommendations are made:

• The age reference date is set as 1st of January.
• Age is estimated based on the counts of winter rings.
• The term ‘+’ growth can be used as an indication of additional growth but this should not confuse the calendar age of the eel.

For **yellow eels**, it is recommended that attention be drawn to the timing of capture and local conditions. Depending on the growing season of the capture location, the appearance of winter annuli on the otolith will vary. In the early part of the year the outer most winter annulus is generally not apparent until the summer growth begins in the new year. This will vary between years and between locations. Therefore, an additional year should be added to these eels sampled early in the year after January 1st in order to account for this undifferentiated annulus from the outer margin of the otolith.

For **silver eels**, flexible interpretation in some local situations may be required. Silver eel traditionally migrate as an annual migration ‘cohort’. This ‘cohort’ receives its age from the next January as the eels have completed their annual growth period and we assume a putative annulus on the outer margin of the otolith (e.g. silver eels migrating in October 2008 take their age from the January 2009).

In the Northern European region (e.g. Scandinavia) the silver eel run may cease prematurely due to cold temperatures in the winter months and recommence in the following spring, then both portions of the migration should be referenced to the January in the middle of the run. Similar delayed runs can occur due to low water and/or hydropower barriers that prevent migration.
8 Inter-calibration

The ICES Workshop 2009 carried out a preliminary inter-calibration exercise using 21 Swedish otoliths of eels of known age where the 25 readers were of varying experience and had varying levels of knowledge on the supporting eel data and information. This indicated considerable variation and the results were only used to support the workshop discussions on setting up reading protocols and a formal inter-calibration.

We recommend carrying out an experienced reader inter-calibration procedure in the near future based on the age criteria described in the manual and the reading of at least a hundred otolith pictures for each species, including both eels of known and unknown age. This could be done using image exchange and culminate in a workshop for discussion of the outcomes, follow-up training and update of the manual.

Svedang et al. (1998) using otoliths of known and unknown age from fresh, brackish and marine waters found that the accuracy of age estimation was uncertain and deviations from the correct age were dependent on reader, locality and fish age. Also while consistency within readers was high, a drift over time was noted.

9 Image Library

The ICES Workshop 2009 collated a demonstration set of images so as to give examples of the main otolith preparation methods and the main structures visible on the otoliths. This is a library that should be expanded in the future into a reference library but it was limited in the first instance by the availability of suitable images and the file size of the manual.

The initial demonstration collection of images is given in Chapter 11 of this manual.

10 References

11.1 Ground, polished and stained otoliths

Otolith from an eel of known age (5+), weighing 51g with 328mm TL. This eel was caught in Lake Mälaren, and was marked with Alizarin red in June. New summer growth is visible at the very edge of the otolith. [File: Hakan Area 13 30124.tif]

(H. Wickström/A. Asp)
Quebec *Anguilla rostrata* (4+ yrs) showing erratic growth patterns throughout eels entire life and "+" growth to the outside edge of the otolith. File [Quebec MORIN - 2002-01.JPG] (G. Verrault)
Otolith from an eel of known age (5+), weighing 161g with 478mm TL. This eel was caught in Lake Mälaren. A Quarantine (dotted line) and Alizarin red event is visible between the zero band and year one. File [Sweden Hakan Area 1 Quarantine-Alizarin event 30199.tif] (H. Wickström/A. Asp)
Otolith from an eel of known age (5+), weighing 152g with 466mm TL. There is a winter edge visible and quarantine marks from Alizarin marking in June. File [Sweden Hakan Area 1 aquaculture checks 29954.tif]

(H.Wickström/A.Asp)
Italian ground (sagittal), polished and stained otolith (toluidine blue stain) 4+ yrs old. Note the presence of large amount of check marks within year 1 possibly related to meditteranean sea influences. File [Italy Tev_G04.JPG] (F. Capoccioni)

Zero band
Swedish (Baltic) silver eel of 15yrs (sagittal plane) but good example of double edged annuli particularly between years 8-11 (as marked). Prepared using the Swedish Protocol.
(A. Odelström)
Swedish, Baltic, silver eel of 13 yrs (sagittal plane).
Note the width of the zero band to the first annulus with a stocking check in its centre (*).
Prepared using the Swedish Protocol.
(A. Odelström)
Otoliths from a Swedish silver eel (17yrs) ground and polished in the transverse plane (left), and in the sagittal plane (right). Prepared using the Swedish Protocol.

The white dot indicates the zero band and the white slashes indicate years 2, 5, 10 & 15.

(A. Odelström)
Chesapeake *Anguilla rostrata* 4+ yrs old transverse ground, etched and stained (toluidine blue). Demonstrates the use of toluidine blue as a stain, but this stain may highlight additional checks within annual bands. File [chesapeake transverse ground etched stained james5.jpg](D. Secor/K. Fenske))
11.2 Comparisons between burn & crack and grinding & polishing

Otolith from an eel of known age 5+, exhibiting a dark edge zone that is difficult to read. This eel was caught in Lake Mälaren, Alizarin marked in June, and prepared by burning and cracking. Insert: same otolith prepared by sagittal grinding. Red arrow indicates zero band; yellow arrow indicates check due to alizarin marking. File [swedan known age SWEKA_30128.tif] (H. Wickström/C. O’Toole)
Otolith from an eel of known age 11+, weighing 233g with 518mm TL, and aged as 13 years with growth vector and annuli marked. Two checks were falsely identified as annuli – see yellow circles. This eel was caught in Lake Mälaren, marked with Alizarin red in May, and prepared by burning and cracking.

File [swedan known age SWEKA_35709.inc.tif]

(H. Wickström/C. O’Toole)
11.3 Burning and cracking

Otolith of a November glass eel (left), caught in the Burrishoole catchment, with increments marked and measured. The zero band is slightly apparent at 175 µm. File [ESTGE_1Nov87.tif]

Otolith of a June glass eel (middle), caught in the Burrishoole catchment, with increments marked and measured. Summer growth is clearly visible after 164 µm. File [Burrelver88_46-Jun88.tif]

Otolith of an August glass eel (right), caught in the Burrishoole catchment, with increments marked and measured. File [Burrelver88_66-Aug88.tif] (R. Poole/C. O'Toole)
Otolith from 6 year old Irish eel, including an example of a false annular check between years two and three. This otolith was prepared by burning and cracking. File [Ireland, cracked and burnt S02_6.tif] (C. O’Toole)
Otolith from 8 year old, male silver eel. There is a false check between years four and five. This eel was caught in Lough Neagh, and prepared by burning and cracking. File [L. NeaghBr03(8 bit)_11.tif]
(D. Evans/C. O'Toole)
Otolith from 17 year old silver eel, exhibiting a false check between years one and two. This eel was caught in Lough Neagh, and prepared by burning and cracking. File [Neagh Br03_14.tif]
(D. Evans/C. O'Toole)
Example of an old eel, TL 45.4cm, caught in the Burrishoole catchment, aged 35 years. During mid-life, this eel has undergone a series of poor growth years that could easily be misinterpreted as false checks. However, the definition and continuity indicate that they are certainly annuli (see 6.3 *Annual rings and false checks*). - old irish Burr Sil07_105.tif (C. O'Toole/R. Poole)
An example of a very old, female silver eel, aged at 55 years old; TL 77.4cm. This eel was caught in the Burrishoole catchment, and prepared using the Irish method burning and cracking. File [old irish BurrSil87_57.tif] (R. Poole)
11.4 Other demonstration images

Mediterranean otolith with zero band – maybe due to glass eel arrival in late autumn there is some growth before the first winter. The radius $L2$ of 0.17mm is the equivalent to the zero band radius in Atlantic area glass eels. Otolith polished and cleared in alcohol. File [B1 208.jpg] (JM. Caraguel)
Mediterranean otolith with zero band may be due to glass eel arrival in spring summer with an absence of a winter band at the transition time. The radius L1 of 0.16mm is the equivalent to the zero band radius in Atlantic area glass eels. L2 is the first winter after the "zero band". Otolith polished and cleared in alcohol.

File [F4 2 08.jpg]
(JM. Caraguel)
Otolith from an Irish yellow eel, prepared by burning and cracking in the transverse plane and showing a double nucleus. Not possible to age this specimen.

(C. O’Toole/R. Poole)
Otolith from a French eel showing a double nucleus File [150604a07.jpg] (F. Daverat)
Otolith from a rod and reel record silver eel caught in New Jersey, at 106cm TL and weighing 3Kg. No clear origin, zero band or early annuli can be identified from this image, and so it should be considered unsuitable for aging despite the outer annuli being clearly visible. It is thought, however, that this eel is at least 16 years old. File [New Jersey 16 year silver 106cm 3kg.tif] (G. Verrault)
Otolith from a Swedish silver eel ground and polished in the transverse plane. Prepared using the Swedish Protocol. Difficult to read due to the high number of double edged annuli and the otolith was over-ground which led to removal of the nucleus.

File [KU74s-eal 2.jpg]
(A. Odelström)
An Irish yellow eel from a brackish lagoon, TL 34.5cm, with the otolith prepared by burning and cracking showing many false annular growth checks. Age is 9+ years, or it could be 12 if the band at years 4 & 5 are interpreted as annuli.

(R. Poole/C. O'Toole)
Breton, Canada *Anguilla rostrata* Useful image to highlight the problem of insufficient grinding towards the outer edge of the otolith making overall reading impossible

File ([Breton Martha rostrata 2-7-51R.jpg](#)) and again from Martha File ([Breton Martha rostrata 1-1-27R.jpg](#))

(M. Jones)
Quebec *Anguilla rostrata* OTC marked otolith showing obvious check from OTC – known age = 9 years. Aged as 9+ with poor mid life growth (marked). Annuli indicated by red dots. File [Quebec Oxy MORIN-OTC - 2008-03.jpg] (G. Verrault)
Chesapeake *Anguilla rostrata* transverse ground, etched and stained (toluidine blue). This image is a good example of how toluidine blue may highlight the presence of checks; it reads as 5 although it could be interpreted as more.

File [Chesapeake kari ground etched stained transverse choptank10.jpg]

(D. Secor/K. Fenske)
Otolith from 11 year old, female yellow eel, with 43 cm TL. This eel was captured in May 2001 in Lake Pritzerbe, prepared under the German method, and imaged at 125-fold magnification. File [PE-E-24-10x keine ZWR.jpg] (J. Simon)
Otolith from a 14 year old, female silver eel, with 57 cm TL. The zero band is particularly difficult to interpret, and exhibiting a clear false check. This eel was captured in May 2001 in Lake Rangsdorf, prepared under the German method, and imaged at 125-fold magnification. File [RANE-E-7-10x-a-ohne-ZWR.jpg] (J. Simon)
Otolith from an Irish male silver eel, TL 31.2cm, that can’t be aged due to an abnormality in the structure of the otolith (BurrSil07-169.jpeg).

(C. O’Toole/R. Poole)