STOCK IDENTIFICATION METHODS
Applications in Fishery Science

From Working Group to Book
(to theme session...)

Edited by Steven X. Cadrin,
Kevin D. Friedland, and John R. Waldman
Stock Identification:

• An interdisciplinary field that involves the recognition of self-sustaining components within natural populations;
• A central theme in fisheries science and management;
 – a prerequisite for the tasks of stock assessment and population dynamics;
 – a consideration for sampling and analysis of any field studies for population inferences.
Justification for SIMWG

• Stock identification remains one of the most confusing subjects in fisheries science.
• A synthetic overview of the various methods was not available.
• A focus on application of stock identification results to fishery science and management was lacking.
• Significant advances have been made in many approaches to stock identification in recent years.
Historical Development of SIMWG

- **1992** – ICES established the Study Group on Stock Identification Protocols for Finfish and Shellfish Stocks (SGSIPFSS?) chaired by Kevin Friedland to *review methodologies of stock identification and develop a protocol for the application of stock identification results.*
- **1997** - renamed Stock Identification Methods Working Group (SIMWG)
- **2000** - Steve Cadrin & John Waldman joined Kevin as SIMWG co-chairs
Table of Contents

INTRODUCTION
- Overview *(Cadrin, Friedland & Waldman)*
- Definition of Stocks *(Waldman)*
- Fish Migration and the Unit Stock *(Secor)*
- Environmental Influences *(Swain, Hutchings & Foote)*

LIFE HISTORY TRAITS
- The Use of Early Life Stages *(Hare)*
- Life History Parameters *(Begg)*

MORPHOLOGICAL ANALYSES
- Morphometric Landmarks *(Cadrin)*
- Morphometric Outlines *(Cadrin & Friedland)*
- Analyses of Calcified Structures *(Friedland & Cadrin)*
- Meristics *(Waldman)*

ENVIRONMENTAL SIGNALS
- Parasites as Biological Tags *(MacKenzie & Abaunza)*
- Otolith Elemental Composition *(Campana)*
- Fatty Acid Profiles *(Grahl-Nielsen)*

GENETIC ANALYSES
- Chromosome Morphology *(Phillips)*
- Allozymes *(Koljonen & Wilmot)*
- Mitochondrial DNA *(Magoulas)*
- Use of Nuclear DNA *(Wirgin & Waldman)*
- Random Amplified Polymorphic DNA *(Smith)*
- Amplified Length Polymorphic DNA *(Liu)*

APPLIED MARKS
- Internal and External Tags *(Jacobsen & Hansen)*
- Electronic Tags *(Bain)*
- Otolith Thermal Marking *(Volk, Schroder & Grimm)*

DATA ANALYSIS
- Experimental Design and Sampling Strategies *(Fabrizio)*
- An Introduction to Statistical Algorithms *(Prager & Shertzer)*
- Classical Discriminant Analysis *(Pella & Masuda)*
- Neural Networks *(Saila)*
- Maximum Likelihood Estimation *(Brodziak)*
- Estimation of Movement *(Schwarz)*

MANAGEMENT APPLICATIONS
- Conservation of Threatened or Endangered Species *(Banks)*
- Fishery Management Advice *(Hammer & Zimmermann)*
- Fish Farm Escapees *(Fiske, Lund & Hansen)*
Theme Session

• INTRODUCTION
 – Overview (Cadrin, Friedland & Waldman)
 – Multiple Approaches for Anglerfish (Fariña et al)
 – Approaches for Horse Mackerel (Abaunza et al)

• LIFE HISTORY TRAITS
 – Phenotypic Characters (Clausen et al)

• MORPHOLOGICAL ANALYSES
 – Morphometrics (Cadrin)
 – Redfish Morphometrics (Reinert & Joensen)
 – Hake Morphometrics (Macara et al)
 – Anchovy Morphometrics (Caneco et al)
 – Analyses of Calcified Structures (Friedland & Cadrin)
 – Otolith Microstructure of Blue Whiting (Brophy & King)
 – Anglerfish Morphometrics & Merisitcs (Duarte et al)

• ENVIRONMENTAL SIGNALS
 – Parasites as Biological Tags (MacKenzie & Abaunza)
 – Herring parasites (Podolska & Wyzyński)
 – Otolith Microchemistry or Whiting (Ware poster)
 – Fatty Acid Profiles (Grahl-Nielsen)

• APPLIED MARKS
 – Internal and External Tags (Jacobsen & Hansen)

• GENETIC ANALYSES
 – Microsatellites of Atlantic Salmon (Koljonen)
 – Baltic Salmon Genetics (Michielsens)
 – Genetic Tools (Blanco et al)
 – Blue Whiting Genetics (Varne & Mork)
 – Microsatellites of Hake (Castillo & Garcia-Vazquez)
 – Admixture of Herring (Mariani et al)
 – Genetic of Baltic stocks (Florin & Aho)

• DATA ANALYSIS
 – Experimental Design and Sampling Strategies (Fabrizio)
 – Neural Networks for Horse Mackerel (Murta et al)
 – Maximum Likelihood Estimation (Brodziak)

• MANAGEMENT APPLICATIONS
 – Fishery Management Advice (Hammer & Zimmermann)
 – Baltic Management (Aps et al)
Interdisciplinary Analyses

- Often, new methods are promoted as better ways to approach stock identification, leading to competition among methodological camps.
- Alternatively, when results from each approach are viewed in the context of what aspect of stock structure they reveal, a more holistic view is possible.
- As new methods continue to emerge, their results should be considered along with those from traditional approaches to improve our ability to study stock structure.
The Present and Future

• Despite its importance for fishery management, stock identification continues to be an afterthought.
• Population vital rates are often estimated without regard to stock structure.
• We hope this book and theme session will help to improve the quality of stock identification research and stimulate new research.
Thanks

- Chapter Authors, other SIMWG members & Session Presenters
- ICES Community, particularly David Griffith & Mette Bertelson
- Academic Press: Dave Cella, Kelly Sonnack, Chuck Crumly, Joan Wolk & Janis Bentley