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Observations of fecundity from the most recent Western horse mackerel spawning stock biomass 

survey suggest that the species is an indeterminate spawner and therefore the current model of 

fecundity, used in the calibration of the stock assessment, may be inappropriate. The stock is 

assessed by fitting a linked Separable and ADAPT VPA-based model to the catch-at-age data and to 

the egg production estimates. The assumption is made that egg production and spawning stock 

biomass are linked by a constant but unknown fecundity parameter, estimated within the model. In 

this study, the sensitivity of the model structure to alternative fecundity relationships is explored. 

The introduction of models linking biological indicators of fecundity, such as lipid content or 

feeding intensity during the spawning season is examined. The impact on the perception and 

management of this stock is evaluated within a simulation framework. Simulations suggest that care 

must be taken when incorporating time series of proxies when the underlying relationships with 

fecundity are poorly described, weak or based on few data. 
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INTRODUCTION 

Problems have recently arisen in the assessment of the western horse mackerel stock. For a number 

of years questions about the spawning strategy of western horse mackerel have been raised, and in 

2003 growing evidence led scientists to conclude that it was an indeterminate spawner (ICES 

2003a). The only fishery-independent data for calibration of the assessment model is a time-series 

of triennial egg survey estimates. Prior to 2002, this time series was combined with fecundity 

estimates to create an SSB time series. However in 2002, given concern about the fecundity 

estimates, a total egg production time series was used instead (ICES 2003b). Total egg production 

time series can be used in assessments in the same way as larval abundance series (ICES 2003c), 

but if large scale trends in fecundity occur (as seen in NE Atlantic mackerel, ICES 2003a; and noted 

in horse mackerel, Macer 1974; Karlou-Riga and Economidis 1996), they may introduce bias into 

the assessment and negatively affect the management of the stock. Large variability in short time 

series will also have an impact on management because the assessment is annual (using annual 

catch data), but the tuning index (the egg surveys) is triennial (Simmonds pers. comm.). 

 

With this worry in mind, it was proposed that a proxy could be used to account for variability in 

fecundity (Marshall et al. 1999, Blanchard et al. 2003). Such a proxy may be condition factor, lipid 

content or feeding intensity during the spawning season (Schülein et al. 1995, Girish and Saidapur 

2000; Kreiner et al. 2001, Henderson and Morgan 2002). However, it is probable that the 

assessment will only improve if the predictive power of an index is substantial. Also, to remain 

biologically competent, it is important to understand the functional relationship between the index 

of the proxy and fecundity prior to its use. 

 

There are other problems in the assessment of western horse mackerel. The stock has been 

dominated by a series of strong cohorts with the extremely strong 1982 and the less abundant 1987 

year classes constituting the bulk of the recent catches. Additionally, in recent years there has been 

a change in the selection pattern towards increasing exploitation of younger fish. To account for 

some of these problems, the stock is now assessed by fitting a linked Separable VPA and ADAPT 

VPA-based model (SAD; ICES 2003b) to the catch-at-age data and to the egg estimates. An 

assumption is made that the egg production estimates are based on a constant but unknown 

fecundity that is estimated in the assessment model.  

In this study, we use a simulation framework to investigate the effects of different assumptions 

about the relationship between an index of fecundity (the proxy) and true fecundity on the 

sustainable exploitation of the stock. We consider the strength and nature of this relationship within 
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the context of management advice. The underlying stock dynamics assumes three possible 

functional forms for the relationship between the index and true fecundity, one linear and two non-

linear. The exploitation is regulated on the basis of an annual TAC calculated as a fraction (α) of 

the perceived spawning stock biomass (SSBperc). The consequences of assuming fecundity constant, 

the current practice, or making use of an index of fecundity with its associated potential problems, 

are evaluated by simulation. 

 

METHODS 

Simulations are based on a deterministic age structured model with recruitment generated on a 

stochastic basis; these serve as the "true" underlying dynamics of the western horse mackerel stock 

(Appendix). The stock-recruit function used is a mixture between a Ricker function and a process 

that overrides the Ricker function to allow for the influx of a very large recruitment roughly once in 

20 years. (Macer 1977, Eltink and Kuiter 1989). 

 

Management is based on the perception of the spawning stock biomass (SSBperc), which is obtained 

from an estimate of egg abundance (the "observed" egg abundance, EGGobs) by either using a 

fecundity index or not. The fundamental question asked in this simulation study is whether and to 

what extent the management of the western horse mackerel stock can be improved (in terms of 

minimising the risk of spawning stock biomass falling below Bpa, and maximising catches) by 

incorporating a fecundity index to obtain SSBperc (compared to the current practice of not using a 

fecundity index for SSBperc). In order to investigate this question, a model is required linking SSBperc 

to the "true" spawning stock biomass, SSBtrue, through the following chain: 

 

→1trueSSB →2trueEGG →3obsEGG SSBperc 
 

Given the underlying process linking EGGtrue to SSBtrue (link 1), would the incorporation of the 

perceived knowledge of this process (link 3) with its associated problems (measurement error, 

parameter estimation problems, the underlying process in link 1 not properly understood) improve 

management of the western horse mackerel stock? The method used to investigate this question is 

similar to that used by De Oliveira and Butterworth (in press) to investigate the incorporation of 

environmental indices as predictors of recruitment in order to improve management of the South 

African anchovy stock. 
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"True" egg abundance: 

The "true" egg abundance is modelled on the basis of the relationship between egg abundance and 

spawning stock biomass estimated from the SAD model (ICES 2003b). The total variance 

associated with this relationship can be apportioned into a "process" error component (λegg) linking 

"true" egg abundance to "true" spawning stock biomass (where fecundity plays a role), and an 

"observation" error component (cvegg) linking "observed" egg abundance to "true" egg abundance 

through the sampling CV of egg abundance estimates. The total variance of the egg abundance - 

spawning stock biomass relationship is therefore . The values used in this study for λ22
eggegg cv+λ egg 

and cvegg are 0.6 and 0.3 respectively. These values were selected to reflect a moderate sampling 

CV for the egg abundance estimates, but more uncertainty (double the "observed" sampling CV) 

about the process linking egg abundance to spawning stock biomass. These values were not 

available from the SAD model, because sampling CVs are not available, and because the SAD 

model is currently not structured to estimate variances as part of the assessment model fit (ICES 

2003b). 

 

EGGtrue is derived from SSBtrue with process error, as follows. 

yεtrue
y

true
y eSSB

q
EGG 1

=  (1) 

where 
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In equations (1) and (2), 1/q is the constant of proportionality linking egg abundance to spawning 

stock biomass, and εy models the process error component, , of the total variance of the egg 

abundance versus spawning stock biomass relationship (in log-terms), which could in part be due to 

variability in fecundity. As fecundity is difficult to measure directly, a proxy for fecundity, 

represented by f

2
eggλ

i(Iy), is used, where fi is a functional form relating a fecundity index Iy to fecundity. 

In equation (2), εy is structured such that the variance  has a component explained by I2
eggλ y, 

namely: r λegg fi(Iy), and an unexplained component: yηeggλ2r1− . Assuming that  is entirely 

due to fecundity, the correlation coefficient r

2
eggλ

2 relates to the relationship between fecundity and the 

index Iy and reflects the proportion of variance that is explained by the index, while ηy is an 

independently generated random variable. A high r2 value therefore indicates a very strong 

relationship between fecundity and the fecundity index Iy, which are linked by the function fi. 
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For convenience, equation 1 can be re-written as follows, separating the model component from the 

random noise component. 

][][1 21)( yeggyiegg rIfrtrue
y

true
y eeSSB

q
EGG ηλλ −××=  (3) 

 

Functional forms for fi 

Three functional forms for the relationship between the index and fecundity are considered, as 

follows. 

Linear:  (4) yy IIf =)(1

Logistic:  (5) )5.2arctan()(2 yy IIf =

Quadratic: 
2

1
)(

2

3
y

y

I
If

−
=  (6) 

All three fi functions have the property that E[fi(Iy)] = 0 and var[fi(Iy)] = 1, so that E[εy] = 0 and 

var[εy] = . The quadratic model f2
eggλ 3 is perhaps unrealistic for a index - fecundity relationship 

(f3(Iy) is positive for <1, otherwise it is zero or negative, so that the index behaves in a similar 

way to temperature, where successful egg incubation, say, is only possible within a narrow 

temperature window), but it is nevertheless included to provide a greater contrast between the 

underlying functional form (in this case quadratic) and its perceived form (always assumed linear) 

for the "estimated index" (see "Perceived SSB models" below). 

2
yI

 

Observed egg abundance 

The observed egg abundance is generated from EGGtrue with observation error as follows. 
yeggcvtrue

y
obs
y eEGGEGG ω=  (7) 

where ωy ~ N[0; 1] and cvegg represents the sampling CV related to observed egg abundance 

estimates. 

 

Perceived SSB models: 

Three perceived SSB models are considered relating to how SSBperc is derived from EGGobs.  
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(a) no index 

This model omits the use of an index, and assumes a constant linear relationship between egg 

abundance and SSB. 
obs
y

perc
y EGGqSSB =  (8) 

 

(b) perfect index 

This model assumes perfect knowledge about function fi (i.e. function fi is known), and assumes no 

measurement error for the index. It is therefore unrealistic, but is nevertheless shown to indicate the 

best one could do by incorporating a fecundity index. 
)( yieggI Ifobs

y
perc
y eEGGqSSB λρ−=  (9) 

[Note: for r2 = 0, this model is identical to (a).] 

 

(c) estimated index 

This model selects amongst several indices (Iy, Jy, Ky), only 1 of which (Iy) is related to fecundity. 

Selection is done through stepwise regression assuming a linear model (g), with measurement error 

included for all the indices and εy.  
),,( yyy KJIgobs

y
perc
y eEGGqSSB −=  (10) 
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Measurement error, m, was set at 0.5. 

 

For each simulation run, a new set of parameters b  for the estimated index model 

were derived prior to the 20-year projection of that simulation run. This was achieved by generating 

a 10- or 30-year time-series of “data” {  using equations (2) and (12) (with 

additionally X = ε in equation (12) to generate ), and applying a stepwise regression technique 

using equation (11) and forward selection, with a p value of less than 5% serving as a criterion for 

inclusion of a parameter in the model. Therefore, a situation where (incorrectly) b  

3210
ˆandˆ,ˆ,ˆ bbb

};; merr
y
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; merr
y
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y Iε

yε

0ˆ and 0,ˆ
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is possible. Once a set of parameters for equation (11) have been derived for a simulation run, they 

are used for the entire duration of the projection period for that simulation run. 

 

Setting the TAC 

A simple constant proportion harvesting strategy is used to set the TAC, as follows: 
perc
yy SSBTAC α=  (13) 

 

Summary performance statistics 

Summary performance statistics are used to compare the overall performance of one perceived SSB 

model relative to another. Three summary performance statistics are considered as follows. 

(i) "Proportion < Bpa" calculates the number of cases (out of 20 years × 500 simulations) for 

which SSBtrue is below Bpa = 500 000t. 

(ii) "Median Catch" calculates the median catch from 10 000 (=20 years × 500 simulations) 

catch realisations. 

(iii) "Average Catch Variation" calculates the average variation in annual catch Cy as follows 
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RESULTS 

Results were obtained for the three perceived SSB models: (a) "no index" which corresponds to the 

current assumptions in the assessment, i.e. constant fecundity, (b) "perfect index", which assumes 

perfect knowledge of the relationship between the index and fecundity, and (c) "estimated index", 

where the parameters of the relationship between the index and fecundity are estimated using a 

linear model (even if the underlying form of the fecundity index - fecundity relationship is non-

linear) with measurement error included. Each of the plots shown provide a comparison between 

these three perceived SSB models, given values for r2 (the "strength" of the fecundity index - 

fecundity relationship), the number of years of data used to estimate the parameters for perceived 

SSB model (c), and the underlying form of the fecundity index - fecundity relationship. 

 

Assuming a linear underlying functional form for the fecundity index - fecundity relationship and 

the availability of only 10 years of data for estimating parameters for the "estimated index" model, 

Figure 1 provides a comparison of the three perceived SSB models for three different r2 values. 
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Results indicate that under these conditions, the "no index" model outperforms the "estimated 

index" model for r2 = 0.5 in terms of "Proportion < Bpa" and "Median Catch". Only under 

conditions of a very strong fecundity index - fecundity relationship will the "estimated index" 

model do better than the "no index" model in terms of these two summary statistics, and in terms of 

"Average Catch Variation". As expected, there is no perceptible change in the "no index" model as 

r2 changes. This is because it does not use an index, and because the process error structure 

(equation 2) maintains the same level of variance (and statistical distribution), regardless of the r2 

value and given a linear underlying functional form for the fecundity index - fecundity relationship. 

 
Figure 1 A comparison of the three perceived SSB models (I: no index; II: perfect index; and III: estimated index) 

using the "Median Catch" (in '000t) vs. "Proportion < Bpa" summary performance statistics (top panel), and 
the "Average Catch Variation" statistic plotted against α (bottom panel) for three levels of r2. The 
underlying functional form for the fecundity index vs. fecundity relationship is linear. 
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Figure 2 compares the three perceived SSB models for r2 = 0.5, for a linear underlying functional 

form for the fecundity index - fecundity relationship, and for the case where both 10 and 30 years of 

data are used to estimated the parameters for the "estimated index" model. An improvement in 

terms of "Proportion < Bpa", "Median Catch" and "Average Catch Variation" is apparent when a 

longer time series of data are used for the "estimated index" model. 
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Figure 2 A repeat of the middle column of results in Figure 1 (r2 = 0.5) using 10 (left column) or 30 (right column) 
years of data for the estimated index model (results for the other two perceived SSB models remain 
unchanged). The underlying functional form for the fecundity index vs. fecundity relationship is linear. 
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Figure 3 compares the three perceived SSB models for r2 values of 0.5 and 1 and for three 

underlying functional forms for the fecundity index - fecundity relationship, assuming only 10 years 

of data available for the "estimated index" model. Comparing the performance of a given perceived 

SSB model for different r2 values is tricky for the non-linear underlying functional forms 

(particularly the quadratic model) because the distribution of εy becomes less Normal-like (and 

more asymmetrical in the case of the quadratic underlying functional form) as r2 is increased 

(equation 2). Therefore, performance of the "no index" model apparently improves with an 

increasing r2 for the quadratic underlying form, even though it does not actually make use of an 

index, but this is artificial as it is purely due to the changing distribution of εy. The same effect (i.e. 

apparent improvement in the "estimated index" and "no index" models) is evident when moving 

from a linear to a quadratic underlying functional form. The overall effect of the distributional 

change in εy is that SSBperc is more conservative for the quadratic underlying functional forms 

compared to the other functional forms, so that once again, the apparent improvement across 

functional forms is artificial. Therefore, in the case of Figure 3 (and 4) the performance for a given 

perceived SSB model should not be compared across r2 values for the non-linear underlying 

functional forms, and should not be compared across underlying function forms. Comparisons 
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between perceived SSB models for a given r2 value underlying functional form are nevertheless still 

valid. 

 

Figure 3 shows that the "no index" model outperforms the "estimated index" model for r2 = 0.5, 

regardless of the underlying functional form for the fecundity index - fecundity relationship. When 

there is a very strong relationship between the fecundity index and fecundity (r2 = 1), the reverse is 

true (the "estimated index" model outperforms the "no index" model) for a linear underlying 

function form, but not for the other two functional forms (logistic and quadratic). This is essentially 

because there is a mismatch between the underlying functional form (link 1) and the perceived 

functional form (link 3) 

 

As shown in Figure 2, performance of the "estimated index" model improves throughout when it is 

based on 30 years of data (Figure 4) instead of 10 years of data (Figure 3). This improvement means 

that the "estimated index" model outperforms the "no index" model for both the linear and logistic 

underlying functional forms for r2 values of 0.5 and above (Figure 4). In the case of the logistic 

underlying function form, this is probably possible because it is near-linear in a range of fecundity 

index values of highest probability (equations 2 and 5), and so is well estimated by a linear model 

(link 3) if the time series of data used in the estimation process is long enough. This is not the case, 

however, for the quadratic underlying functional form, for which a linear model is not a good 

approximation, even if a long time-series of data is available for estimating parameters. 
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Figure 3 A comparison of the three perceived SSB models assuming different underlying functional forms for the 
fecundity index vs. fecundity relationship (linear in the top, logistic in the middle and quadratic in the 
bottom panel), for r2 values of 0.5 (left column) and 1 (right column). The vertical axis reflect 
"Proportion < Bpa", and the horizontal axis "Median Catch" (in '000t). The estimated index model uses 10 
years of data. 
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Figure 4 All details are as for Figure 4, except that the estimated index model uses 30 years of data. The results for 
the other two perceived SSB models therefore remain unchanged compared to Figure 3. 
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DISCUSSION 

As with all simulation studies, the results of the study are completely reliant on the assumptions of 

the model. This study assumes that the index used as a proxy for fecundity is already verified, so 

that the length of the time series referred to throughout this study relates to only that portion of a 

time series of data used to develop the hypothesis about the index - fecundity relationship, and not 

the portion used to verify this hypothesis (Myers 1998). Typically, time series would need to be 

longer than 10 or 30 years (the values used in this study) to cope with both hypothesis development 

and verification. An analysis of different values for λegg, cvegg and m warrants further investigation, 

as does the effect of assessment uncertainty (not currently accounted for) on results. Further this 

study only investigates the scenario of random variation in fecundity. Scenarios where a trend in 

 12



fecundity was introduced, which would result in trends in the residuals from the assessment model 

fit were not simulation tested. 

 

Given the values used for λegg, cvegg and m in this study, that reflect the levels of process and 

observation error incorporated, the main conclusions of this study are that the use of a proxy for 

fecundity, to help obtain a perception of spawning stock biomass from egg abundance estimates, 

would improve management of western horse mackerel if: 

• a strong relationship exists between the index used as a proxy for fecundity and fecundity itself, 

• a relatively long time series of data is available to estimate the parameters of this relationship, 

and 

• the underlying functional form of this relationship is well understood. 

The "strength" of the relationship required for improved management if a fecundity proxy is used 

depends on the length of the time series available for estimating the parameters of the index - 

fecundity relationship. For example, results show that improvements are not possible for an r2 of 0.5 

if only 10 years of data are available for estimating these parameters. Very few studies show 

relationships as strong as r2 = 0.5, and few have very long time series (Arctic cod being a notable 

exception, Marshall et al 2000).  If the underlying functional form of the index - fecundity 

relationship is not well understood (i.e. the "perceived" form does not match the true underlying 

form), poorer performance is likely when using the proxy for fecundity compared to not using a 

proxy and assuming fecundity is constant, even if the relationship between the index and fecundity 

is very strong.  Hence care must be taken when incorporating time series of proxies when the 

underlying relationships with fecundity are poorly described, weak or based on few data. 
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APPENDIX 

Spawning stock biomass: 

The spawning stock biomass in the underlying model, referred to as the "true" spawning stock 

biomass, is calculated as follows. 

2021,...,2002
11

1
, == −−

+

=
∑ yewQNSSB aMyaF MpFspstock

aa
a

ay
true
y  A1 

where 

 Ny,a is the number of fish aged a in year y; 

 Qa is the proportion of mature fish aged a; 

  is the mean weight of fish aged a in the stock; stock
aw

 sa is the selectivity at age a; 

 Fy is the fishing mortality in year y; 

 Ma is the natural mortality at age a; 

 pF is the proportion of fishing mortality that occurs before spawning; and 

 pM is the proportion of natural mortality that occurs before spawning. 

 

Recruitment: 

Recruitment is generated using a combination of the Ricker stock-recruit function with parameters a 

and b estimated from a fit to stock-recruit estimates derived from the SAD model (ICES 2003b), 

and a process that allows the influx of very large recruitment with a frequency of roughly one in 20 

years (equation 2). The recruitment variation and serial correlation parameters, σR and ρser 

(equations 2 and 3), are derived from this fit. 
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where y = 2002,...,2021, ψ is independently drawn form a U[0; 1] distribution, and 
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Numbers-at-age: 

An age-structured deterministic underlying model is used, and is based on a separable assumption 

with regard to fishing mortality and selectivity, and assumes a plus group at age 11. The only 

stochastic part of the underlying model is recruitment (equations 2 and 3). 
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Calculating the fishing mortality and catch 

The fishing mortality that results from applying TACy is calculated by solving for Fy from the 

following: 

∑
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An upper limit is placed on catching efficiency (Fy ≤ 20, which results in 

98.0)1( ≤−
+

−− aya MFs

aya

ya e
MFs

Fs
 for any age group, given the values used for sa and Ma. The 

resultant Fy is then used in equation 18 again to calculate the annual catch Cy (replace TACy with Cy 

in equation A5). 

 

 16


	Theme Session X: Evaluation of Fisheries Management Scenarios and the Supporting Data through Simulation
	Investigating the Use of Proxies for Fecundity to Improve the Management of Western Horse Mackerel. ICES CM 2003/X:13
	INTRODUCTION
	METHODS
	"True" egg abundance:
	Functional forms for fi
	Observed egg abundance
	Perceived SSB models:
	Setting the TAC
	Summary performance statistics

	RESULTS
	DISCUSSION
	REFERENCES
	APPENDIX
	Spawning stock biomass:
	Recruitment:
	Numbers-at-age:
	Calculating the fishing mortality and catch



