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Abstract

In 1993 on-board scales for weighing individual fish were taken into use on Icelandic
research vessels. All fish sampled for ageing have been weighted (and length-measured)
since that time. These data on length and weight are used to examine length-weight
relationships for saithe in Icelandic waters. The paper compares several approaches to
modelling these data. The resulting models can be used to validate the data collection
process in addition to obtaining biological information.

Introduction.

The main practical use for length-weight relationship at the Marine Resea'rch Institute in
Iceland (MRI) is for calculating catches in numbers at age for stock assessment purposes
and estimating the mean weight at age in Jandings and from surveys. In 1993 it was
decided to weigh all fish sampled for ageing to avoid discrepancies arising from using
Jength-weight relationships. As this data series is relatively short, Jength-weight
relationships are used when comparing longer time scries. Also when sampling huge
amount of data of this kind more or Jess electronically, the use of good length-weight
relationships for quality control is of great importance.

Until now all length-weight relationships at the MRI have been estimated based on the
relationship W=aLß, with W=weight and L=length, by using a linear regression on a
Jogarithmie seale for estimating a and ß. As this function does not fit weil over the
whole range of lengths for many fish species (Lundbeek 1951) it was considered
important to look through the data collected in rccent years to see if more accurate
relationships could be established.
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Material

With the introduction of electronic on-board scales weighing of individual fish at sea
became feasible. Since 1993 all fish sampled for ageing at the MRI have been length­
measured and weighted by use of on-board scales. The data used for saithe in this study
was collected in 1993-1997 in the Icelandic Oroundfish Survey (Palsson et al. 1997)
canied out annually in March all around the island. The gear used is a bottom trawl with
a 40 mrn codend cover. The length is measured to the nearest centimeter and the
accuracy of the scales (MAREL M20001M74 Portable) used is ±- 1 g for fish weighting
iess than 3kg, ± 2g for fish between 3 and 6kg and ±5g for fish over 6 kg. Outted weights
were used to avoid to variations resulting from varying stornach content, gonad maturity
and liver weight. Sampling was random, weighing every third length measured saithe in
a hauI.

The S-PLUS statistical package is used for programming the models (see Chambers el. al
1992).

Methods.

The relation between length and weight for saithe is shown in Fig. 1. The data is
linearized using a logarithmic transformation and a model of the form

(1) log W =CI + ßlog L

is hypothesized (Fig. 2). When using a linear regression on log-transformed data, a
correction factor is needed when backtransforming the regression function (Hayes el. al
1995). To avoid this a linear regression in the dass of generalized linear models (OLM)
is used with the family option. This model requires that the distribution of the data is
known. By looking at Fig. 1 it seems that the variation in the data increases with length,
possibly suggesting a gamma distribution. Fig. 3, shows a log-log plot of the variance
versus the mean weight per length. A linear regression of the log-variance on the log­
mean of the weight gives the slope of 2.12 ±0.08, which is dose to a value of 2, which is
the case if a gamma density is assumed.

Model (1) was fitted, by use of OLM with the family option set as gamma distribution.
This model explains about 99% of the variation in the data (R 2 =0.993), but by looking at
Fig. 2, there are strong indications that a linear regression is not appropriate. The bulk of
the data points below log(length) of about 3.6 are below the regression line and over the
regression line for the highest values of log(length). The model can be tested formally by
using the decision rule:

Cl : log W =CI + ßlog L
and

C2 : log W;t: a + ßlog L

and the following test statistic (see 1. Neter and \V. Wasserman 1974)
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where * .F ~F(1-a;c-2,n-c) conc1ude CI
and

F*>F(l-a;c-2,n-c) conclude C2 .

With F* =7.17> 1.25=F(0.95;101,301O), C2 is conc1uded, which means a linear
regression is not appropriate.

As the regression function is not linear, the next approach is to modify model (1) with
respect to the nature of the regression function. The plot of 10g(mean(W» versus 10g(L)
(Fig. 4), indicates that a quadratic term should be included in the model. Hence the
foIlowing model was fitted:

(2) log W =a + Plog L +y(1og L)2

The results of the model support that all the parameters a,Pand y are required in the
model. As before the aptness of the model can be tested, the alternatives now being:

CI: log W =a + Plog L + Y(log L)2
and

C2 : log W =I: a + Plog ~ + Y(log L)2

The same test statistic is used as before. Since F* =3.98> 1.25=F(0.95,100,301O), C2

is concluded, that means a quadratic regression is not appropriate. The 10g(mean(W»
versus 10g(L) plot (Fig. 4) indicates that a polynom of higher degree might be more
appropriate, so a qubic term was added to model (2):

(3) log W =a + Plog L +y(1og L)2+Ö(log L)3

This time too the result of the model supports, that all the parameters are required in the
model. But using the same decision rule and the same test statistic as before
F* =2.36> 1.25=F(0.95,99,301O), which means a qubic polynomial is also not
appropriate. When looking at Fig. 6, it it obvious that the qubic polynomial does not fit
the data weIl for the lower part of the lengths.

As models with linear, quadratic and qubic terms are rejected due to the test F*>F, there
is obviously a need for a more flexible model, a model of the type

(4) 10g(W) =J(1og(L»

Such a function can be smoothing splines, but such a model belongs to the class of the
generalized additive models (GAM). By using the equivalent degrees of freedom as the
smoothing parameters some fits were performed and the models compared using the
anova with F test (Table 1 and Fig. 7 to 9). F * and the corresponding F (at a=O.05 )
were computed as weIl (Table 1). From Table 1 it can be seen that the residual deviance
has decreased much relative to the error variance
(residual deviallce/residual degree offreedom) for 1 df, from the model with
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log(length) to the model with s(log(length),df=3). In GAM models, the number of
parameters in the model are equivalent to the number of observation minus the residual
degree of freedom. Obviously there is the demand for having as few parameters in the
model as possible. For all the models F*>F which means that none of the models are
appropriate. .

The 'practical use of a nonparametric model of this kind would be using a table to search
in for mean weight at age for given length, instead of using a simple equation with given
parameters. As another choise to keep on with parametric form i~ to construct the model

(5) 10g(W) = a + ß10g(L), separately for L in each 01 equal intervals.

Some fits were performed and F* and F (at a=O.05 ) computed for each interval (Table 2
and Fig. 10 to 12). There is the need for 4 intervals if F !::.F is to hold on every interval
and ihis implies the use of a total of 8 parameters. This model lacks continuity, but on
the other hand it is a parametric one and easy to use. There are more ways to divide the
lengths into intervals, but here it was decided to look only at equally great intervals.

Discussion

In this paper it was decided use all data awailable, not truncate the lower or the upper
part of the lengths, inspite of fewer datapoints then for the midpart. It was also decided to
use a lack of fit test, although it requires that the observations are normally distributed. A
natural next step would be to construct a lack of fit test for gamma distributed
observations.

The models viewed in this paper, taking into account both the number of parameters and
the lowest F* number, suggest that the nonparametric generalized additive (GAM)
model s(log(length),df=3) gives the best fit. But conventional piecewise linear models,
based on splitting up the length intervals, might be the best choice for practical use,
especially for quality control.
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Analysis of Deviance Table

Response: weight

Tenns Resid. Df Resid. Dev Test Df Deviance FValue Pr(F) Numberof F" F(.95,103-no.param.,3010)
parameters

1 log(length) 311 1.000 19.86628 2 7.15 1.25

2 s(\og(\ength).df=2) 3109.999 17.82163 1 vs.2 1.001074 2.044645 374.2832 O.OOOOOOe+OO 3 3.31 1.25

3 s(1og(1ength),df=3) 3108.999 17.12785 2 vs. 3 1.000075 0.693783 127.1277 O.OOOOOOe+OO 4 2.04 1.25

4 s(log(length),df=4) 3107.999 16.87737 3 vs. 4 0.999764 0.250479 45.9117 1.000000e-11 5 1.60 1.25

5 s(log(length).df=5) 3106.999 16.77795 4 vs. 5 0.999655 0.099416 18.2245 2.027245e-05 6 1.44 1.25

6 s(log(length),df=6) 3105.997 16.72993 5 vs. 6 1.002306 0.048020 8.8533 0.00292767 7 1.37 1.25

Table 2

numberof
intervals F' F F' F F' F F' F

2 7.32 1.34 1.80 1.39

3 2.92 1.43 1.52 1.43 1.37 1.59

4 0.69 1.51 1.28 1.50 1.09 1.52 1.57 2.68



Fig. 1, Sailhe, 1993-1997 Fig. 2, a log-log transformation of the data
with the regression line
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Fig. 3, log(variance) versus log(mean weight) per lenglh Fig. 4, log(mean weighl) versus 10g(length)
and a regression line
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• Fig. 5, the regression function is a second order polynomial Fig. 6, the regression function is a third order polynomial
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Fig. 7, smoothing splines with df=2
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Fig. 8, smoothing splines wilh df=3
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Fig. 9, smoothing splines wilh df=4 Fig. 10, Ihe lenglh is divided into 2 inlervals
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Fig. 11, the length is divided inlo 3 intervals
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Fig. 12, the length is divided inlo 4 intervals
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