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ABSTRACT

This case study Was carried out on the measurerrierits oi the nurnber arid biomass of ci certain
type of bivalve, the spisule Spisula ovalis, which is found in the sand inshallow waters (in this
case -from 6 to 17m in depth) near the Ile d'Yeu on the Atlantic coast of France. The sampling
procedure consisted of finding the limitS of the sand bank and of estirriaiing the overall biomass
from randorn sampling using aHamon grab. This takes the sediments in an area of 0.25m2 and
up to 20 to 25 cms in depth. The sediment was then sieved to recover the biwlves which were
measured, weighed and classed according to age.

Geostatistics is a set of spatial statistical techniques that were originally devetoped for estima­
ting and simulating ore grades in the mining industry. Nowadays it is used in many other fields
ranging from the oil industry'to soil science, forestry and agriculture.

The aim of ihis study is to show how geostatistics can be used to quaritify the characteristics of
the spatial distribution ofthe spisules and to estimate the iotal quantity. The geostatistical tech­
nique; kriging, was used to estimate the insitu reserves. Both variables studied (biomass and
number ofspisules) show a large class ofzero values (27 values out of67). This raises one impor­
tant question: should the zeros be included in the study ornot? GI' da they rnerely serVe to deli­
mit the periphery of the area? In order to äriswer this question the kriged estimates were made
with and Without the zeros.

In addition to krigirig the variables, some more advanced geostatistical techniques including dis­
junctive kriging and conditional simulationS were used to assess the recoverable reserves, thai
is, to esiimate the quantity above ci cutoff wlue.

funk-haas
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GEOSTATISTICAL CASE STUDY ON SPISULES AT THE ILE D'YEU

By M. A:rffiSirorig*, D. Renard* arid P. BerthOli**

, <

OßJECTlVES

The primary objectives of this siudy are tWofold: firstly, to show how geostaiisticS can be used
to quantify the characteristics of the spatial distribution of a certain type of bivalve, the spisule
Spisula ovalis, which is foundiri the sand in shallow waters (in this case from 6 to 17m in depth)
near the He d'Yeu ciri the Atlantic coast ofFrance, and secondly to use krlging to eStimate the total
quantity in the area where thc shells exist. In addition to this, some more advanced geostatisÜcal
techniques, disjunctive. kriging arid conditional simulations, were uSed to assess the recoverable

. reserves. It is assumed that the readers are familiar with geostatistics (e.g. wriogram analysis and
kriging). These are presented in the available teitbooks such as Joumd and Huijbregts (1978), and
David (1977).
_ ., r'

INTRODUCTION

This case study W3.S c3.rried out on the measureirients of the number of spisuies and their biomass,
made dudng April 1988. The sampling procedure cOnSisted of finding the limitS ofthe sand bank
and of estimating the overall biomass from random sampling using a Hamori grab. This takes the
sediments in an area of 0.25m2 and up to 20 to 25 cms in depth. 111e sediment was then sieved
to recover the bivalves which were measured, weighed and classed accordirig to age.

Figures 1and :2 show the number and biomass oespisules fOlmd at each of the 67 sampIe loeaiions.
These two figures show that the molluscs exist in a clearly defined area (the region ",here norizero
values are found) aod that further outWard there are no more.

The histograms of the data are shown in Figures :3 arid 4. Both show alarge class of small values
most of which are stdct zeros (27 vahieS out of67). Figures 3b and 4b present the histögrams after

. eliminating th6 zero wlues. This raises one imporuint questiön: should the zeros be inchided in
th6 stüdy or not? Gr do they merely serve to delimit the periphery ofthe area? In order to answer
this question the study was cariied in duplicate, With and v.ithout the zeros.

-.e BASIC STATISTICS
The basic statistics (mean, variance ~lDd correlation Coefficient) were calculated for böth variables
With and without thc:: zero values. lable 1. The mean values are iritich lower when the zeros are
iricluded as is the variance. So the choice ofwllether to incltide them in the ealculation ofthe total
resources is crucial. The scatter diagram (Figure 5) of biomass against riumher of molluscs is typi­
cal of highly correlated variableS (here the couelation coefficient is 0.95).

* Centre de Geostatistiqüe, Eoole des Mines de PanS, 77305 Fontairiebleau. Frnnce
** Direction des Ressources Vivailtes, IFREMER, Plouzane, Brest, France
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Figure 1. Number of Spisules at each location
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Figure 2. Biomass at each Iocation.
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Basic Statistics Mean Value Variance

Biomass
(including zeros) 97.66 21501.00

Number of Molluses
(including zeros) 54.69 7899.44

Biomass
(excluding zeros) 163.58 25232.55

Number of Molluscs
(excluding zeros) 91.58 9854.85

Table 1: Basic Statistics (N.B. the measurements refer to an area of 0.25m2).
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Figure 5. Scatter Diagram of Biomass (on the Y axis) versus Number of Spisules (on the X axis)

VARIOGRAM ANALYSIS

The basic tool in geostatistics for quantifying the spatial correlation between sampIes a certain
distance h apart is the variogram. The experimental variograms were calculated for both variables
with and without the zeros. These were calculated for a lag of 400m in 2 perpendicular directions
600 N of E and 600 W of N since these are the directions along and across the area. Given the
limited number ofsampIes available it would be illusory to calculate variograms in four directions
(which is the standard procedure). Figures 6, 78 and 9.
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Variograms including (he zeros:

The experimental variograms for the number ofsheils and for their bioinass induding zeros (Figu­
res 6 and 7) behave differently for the two direetions. Theyrise more rapidly in the direetion aeross
the deposit than along it. The variograms in the din~ciion across the deposit become erratic for
distanees above 1200m. Sirieethis is more than halfthe diameter across the deposit, this effect mied
not be taken into aecOlint when fitting a mathematieal lllOdel to the vadograrri. Consequently the
variogram model will be chosen to rise up from 0 at a distance h = 0 up to a limit value called the
sill which Will be taken to be the vah.ie of the variance (shown bya dotted line). So thevariabh~s
are assumed to be statisiieally stationary.ExJ5onential variograms models were fitted in both cases.
A model of geometrie anisotropywas used to take aceoimt of the directional differences. The lorig
axis of the ellipse of anisotropy \-vas in the direction 600 W of N and the ratio between the long
axis and the small one is 2.2 for both variables. The parameters of these are shown in Table 2.

Number of Shells Biomass

Nugget Effect Co O. O.
Sill Cl 8000. 22000.

Scale parameter a MOm 400m

Table 2: ParameterS ~or thc Exponeniial ~lodeis for the case where zero v~lues are inchided.

These models are"ilOt the only mies t11<it could be fltted to the experimentai vafiograms. To illustrate
this a second mOdel coriSisting of thesuni of tWo sphericals with sills of 10500. and 11000. and ran­
ges of500m arid 1250m, arid a zero nugget effect gave an equally good fit for biomass. The anisotro­
py is the same as before. Figures 10, 11a andb show these three fitted models. As these two mOdels
for the biomassvariogram are almost identical when plotted (in partieular their behaviour near
~he origin is linear with no nugget effect) they will give virtually identical results in ariy subsequerit
use.

Variograms EXCIuding the zeros:

The eXperimental variograms for both variables when zeros are exduded (Figures 8 arid 9) show
!Wo important features:- a sharp rise after 1000m in the direction across the sandbank and a rather
large value for the first variogram dass in some cases.

The first effect is due to the presence ofa di-ift or trend in the values. So the variable is not siaiiona­
ry in this direCtion for distances above 1000m but this is not important in practiCe because points
more than 1000m awaywill not usually be taken into account during the subsequent estimation
procedure or if they are used, they will have a very low weightirig factor.

Tbe second effect (the high value for the first dass) is due io the very smaiI numbers of pairs of
poirits (only 11) this distance apart. lable 3 be10w shows the numbers of pairs of points used to
calculate thevariogram for each distance dass for bath directions..These figtires show that whereas
the variogram along the length of the area is meaningful üp to the sixth dass (up io 2000m) the
other one is not. In particular in both cases the first distarice dass only contains one couple arid
so this variogram point rieed not be taken irito corisideration wheri fitting the model.

Arter eliminatlrig this varlogram poirit we are facect with the problem of chciosirig the wlue for the
nugget effect. Itwould have been helpful to have had some additional dosely spaced sampIes (e.g.
iri the formof a cross) to aid in choosing the nugget effect. These säinples should of course be loca­
ted in aiYJ>ical area and not prefereritially in a rich or pOor one.

Arter taIdng accotini of these points, a single isotropie exponentiai variograin model with no nugget
effect was fitted in both cases. The parameter values are showri below in Table 4. As before the
choice of a model with a sill indicates that we assume stationarity. Figures 113 arid 13 show the
fitted models.
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Distance dass Aeross the breadth Along the length

1 1 1

2 34 46

3 39 66

4 33 69

5 12 80

6 1 76

7 0 51

8 0 26

Table 3: Number of pairs of points used in variogram caieulations

As before, these exponential models are not the only ones the can be fitted to the exPerimental
variograms. For comparison pUrPoses a second model consisting of a spherieal model With a hmge
of 1200m and a sill of 9800, and a zero nugget effeet was fitted for the number of spisules (Figure
12b).

Number of Shells Biomass

Nugget Effeet Co O. O.
Sill Cl 10000. 22000.

Seale parameter a 560m 440m

Table 4: Parameters for the Exponential Variogram Modei for the casewhere the zeros are excIuded.

~ " , . ,

GLOBAL ESTIMATION

The miXt step is to ~iiriiate the total resomces in this area. This means defining the limitS oi ihai
area. Two different polygons were used for this. Figure 14 shows thc two contours and also the
sampIes (represented bya 0 when there were no spisuleS arid bya +. when there were). One contour
is smoother and cOvers a larger area than the other.(238 x 105 m2 compared to 176 X105 m2), a
decrease of. 25.% • Clearly the difference in the surfaee ares will be reflected inesiimated total
quantities. The change in the contour Will also affect the .estimate of the mean because the area
eliminated is the low grade border zone. Consequently the irieari for the larger area will be lower
than for thc other.

Theestimation teehnique, kriging, usesa weighted linear combination oe thc data vahies. Details
ofthe method can be fourid in any geostatistieal teXtbook. The estimates ofthe global reserVes were
made using the krigirig program BLUEPACK working ina unique neighbourhood (because ofthe
small number ofpoints) and the cxPonential variogram models shown earlier in the tables. ThbleS
5.and 6 give the results. One advantage of geostatistics over other estimation metllods is that it
gives the estimation variance as weIl as the estimated value. As an example the corresponding stan­
dard deviation (Le. tlle square of this wriance) was 13.3for a mean of 165.46 for the biomass for
the case where the positive values were uSed inside thc small polygon.

This leads to four setS of estimates for eaeh variable. Whieh is fight? TWo sets of results can be
elimiriated immediately - tllose roi- the positive data inside thc large polygon and simiIarly for all
data inside the small one. In the firSt of these the large polygon covers many of thc zero sampIes,
arid so remoVing these values before doing the esti~ates art~~cially extcnds the zone of influenee
of the positive ones. Clearly this is rar too optimistie..The seeond case (krigirig inside thc small
polygon whieh encIoses the positive zone but incIuding the zero values outside this in the esiimaiion
procedure) is less pemicious. The preSenec of the zeros outside tends to pull the estimates down­
wards along thc bouridary, whieh could be helpfuI.
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Figure 14. Shapes of the two polygonal contours used for kriging

•

NUMBER OF SHELLS. Mean Value Total Reserves

Large polygon,
all data 65.0 1550x 106

Large polygon,
positive data 85.9 2050x 106

Small polygon,
all data 78.7 1380x 106

Small polygon,
positive data 90.9 1600x 106

Thble 5: Estimated global reserves: the number of individuals (N.B. the mean is over an area of
O.25m2)

BIOMASS Mean Value Total Reserves

Large polygon,
all data 118.8 2830 tons

Large polygon,
positive data 157.8 4560 tons

Small polygon,
aB data 142.31 2500 tons

Small polygon,
positive data 165.46 2910 tons

'Iable 6: Estimated global reserves - the biomass. (N.B. the mean is over an area of O.25m2)



The remaining two sets of estimates are intellectually consistent, and although the mean values are
quite different the total reserves are similar (less than 3.5% difference). This shows a geostatistical
sort of "conservation of matter". The total quantity of matter remains the same but is distributed
differently in the two cases. When all the data are considered inside the large polygon the "estima­
ted surface" is flatter on the edges and more peaked in the centre whereas in the other case there
are "cliffs" along the border line between the area with molluscs and the outside. To illustrate this­
the kriged estimates of the number of spisules were obtained at the nodes of a regular grid inside
the appropriate polygon for the cases where the zeros are included and excluded respectively (Figu­
res 15, 16a and b show these for 8 classes of values ranging from -50 to 350 by steps of 50. The
negative estimates are horizontally striped whereas the positive ones are vertically striped. Figure
16a and 16b show two sets of estimates corresponding to the two different fitted models (exponen­
tial and spherical). The differences are very slight except along the edge. Please note that these three
figures show the kriged estimates for point values. It is also possible to obtain estimates of the ave­
rage values over blocks. These are of course smoother.

In many ways the choice between these two sets of results is more one of choosing between two
different interpretations of the variable. Ifone believes that biological factors have lead to a barrier
between the zone containing the molluscs and the exterieur, then the second case'is appropriate.
On the other hand if one believes that the number of molluscs merely tapers off, then the first case
should be chosen. This choice cannot be made on geostatistical grounds; the bio10gist must make
this choice from his scientific knowledge of the area and the mollusc. In this case because of the
sedimentological characteristics of the area and the habitat of this species, it seems more appro­
priate to use only the positive values inside the small polygon.

Both geostatistical reserve estimates (2830.±.. 640 tons and 2910.±.. 470 tons) compare favourably
with the estimate obtained using classical methods (2600 tons .±.. 600 tons).
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Figure 15: Kriged Results for the Number of Spisules inside the large polygon
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Figure 16a: Kriged Results for the Number of Spisules inside the small polygon using the
exponential model
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Figure 16b: Kriged Results for the Number ofSpisules inside the small polygon using the spherical
model
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CONDITIONAL SIMULATION

Conditional simulations are designed to reproduce the spatial statistical characteristics ofthe d:ita
(Le. the variogram and the histogram) :ind to go through the sampIe points (for a point simulation).
The methodology is explained in most geostatistical textbooks. It consists in transforming the data
to normality (as before), simulating a normal distribution with the appropriate characteristics, con­
ditioning it to respect the data and then back-tTansforming. Clearly the variogram of the gaussian
equivalents is not neceSsarily the same as that ofthe raw data. In this case the fitted model (Figure
22) for these was a spherical with no nugget effect, with a range of 1oo0m and a sill of 1.0(equal
to the variance of the standard normal). Tests were carried out to check that this matched with
the model fitted earHer for the corresponding raw data..The simulation was earried out for 112
points on a regular 200m x 200m grid lying inSide the small polygon. Qrie such simulation is presen­
ted in Figure 23. It is instructive to compare this with the corresponding kriged maps (Figures 16a
and b) which are, as expected, much smoOther.

A total of 100 simulations were made and the global statistics for these were counted. Figure 24·
shows the inverse cumuhited histogram ofthe mean number ofspisules per unit area obtained from
each ofihe 100simulations. This can be interpreted as giving the probability that the average num­
ber would exceed a specified value. Clearly the mean of this histogram is just the kriged average
obtained earHer. This histogram gives more meanirigful confidence inteivals than those obtained
as the mged value plus (and minus) twice the star:tdard deviation.
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Figure 23. One Simulation of the Number of Spisules



Figure 24. Histogram of the 100 mean values obtained from the simulations

DISCUSSION AND CONCLUSIONS

This preliminary report was designed to show how geostatistics can be used for assessing the reser­
ves of sedentary species. The objective of this study was primarily pedagogical. In this case it was
used firstly to calculate the total reserves and the average grades in a Spisule deposit near the Ile
d'Yeu on the Atlantic coast of France. Two variables were studied the number of individuals and
their biomass (in glO.25m2). As the area containing the bivalves is clearly delimited by zero grades,
we studied the impact of including or excluding these zero values. It was found that the total reser­
ves were the same when the reserves were calculated using data including the zeros in the large
polygon covering the whole area, as those obtained in the area containing positive values using only
the corresponding data. These figures are in good agreement with previous estimates made using
classical estimation methods. However the average grades were markedly different.

In addition to obtaining the estimates and the corresponding estimation variances using kriging,
more advanced methods involving Hermite polynomials were used to estimate the recoverable re­
serves as a function of three possible sizes of exploitations blocks. This highlights the importance
of the size of these blocks on the selectivity of the operation. Lastly lOD conditional simulations
were carried out. One of these is presented to show how much more variable the number ofspisules
could reasonably be expected to be, compared to the corresponding kriged maps. The histogram
showing the average number of spisules for each ofthe lOD simulations gives us an idea of the preci­
sion of the estimated value.


