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ABSTRACT

This case study was carried out on the measurements of the number and biomass of a certain
type of bivalve, the splsu]e Spisula ovalis, which is found in the sand in shallow waters (in this
case from 6 to 17m in depth) near the Ile d’Yeu on the Atlantic coast of France. The sampling
procedure consisted of fmdmg the limits of the sand bank and of estxmatmg the overall biomass
from random samplmg using a Hamon grab. This takes the sediments in an area of 0.25m2 and
up to 20 to 25 cms in depth. The sediment was then sieved to recover the bivalves which were
measured, weighed and classed according to age.

Geostatistics is a set of spatial statistical techmques that were ongmally developed for estima-
ting and simulating ore grades in the 1 mmmg industry. Nowadays it is used in many other fields
ranging from the oil industry to soil science, forestry and agriculture.

The aim of this study is to show how geostatlstlcs can be used to quantify the characteristics of
the spatlal dnstrlbutxon of the spisules and to estimate the total quantity. The geostatistical tech-
nique, krlgmg, was used to estimate the msxtu reserves. Both variables studled (blomass and
tant question: should the zeros be included in the study or not? Or do they merely serve to deli-
mit the periphery of the area? In order to answer this question the kriged estimates were made
with and without the zeros.

Inaddition to kri ging the variables, some more advanced geostatlstlcal techniques mcludmg dis-
]uncnve kriging and conditional mmulatxons were used to assess the recoverable reserves, that
is, to estimate the quantity above a cutoff value. :
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GEOSTATISTICAL CASE STUDY ON SPISULES AT THE ILE D'YEU

By M. Armstrong*, D. Renard* and P. Berthou**

OBJ ECTIVES

The primary objectives of this study are twofold: ﬁrstly, to show how geostatlstncs can be used
to quantify the characteristics of the spatxal distribution of a certain type of bivalve, the spisule
Spisula ovalis, whxch is found in the sand in shallow waters (in thls case from 6 to 17m in depth)
near the Ile d’Yeu on the Atlantic coast of France, and secondly to use kngmg to estimate the total
quantity in the area where the shells exist. In addition to this, some more advanced geostatistical
techniques, dlSjlmCllVC kriging and conditional s1mulat10ns, were used to assess the recoverable
' reserves. It is assumed that the readers are familiar with geostatlsucs (e.g. vanogram analysis and
kriging). These are presented in the available textbooks such as Journel and Huijbregts (1978), and
David (1977).

INTRODUCTION

This case study\\as carried out on the measurements of the number of spxsules and their bxomass,
made durmg Apnl 1988. The sampling procedure consisted of findmg the limits of the sand bank
and of estlmatmg the overall biomass from random samplmg using a Hamon grab. This takes the

sediments in an area of 0.25m2 and up to 20 to 25 cms in depth The sediment was then sieved
to recover the bivalves which were measured, welghed and classed according to age.

Fig gures 1and 2show the number and biomass of spxsules found at eachof the 67 sample locatxons
These two figures show that the molluscs existina clearly defi ned area (the region where nonzero
values are found) and that further outward there are no more.

The hlstograms of the data are shown in Figures 3 and 4. Both show a large class of small values
most of which are strict zeros (27 values out of 67). anures 3b and 4b present the hlstograms after
: ehmmatmg the zero values. This raises one important question: should the zeros be included in
the study or not? Or do they merely serve to delimit the periphery of the area? In order to answer
this question the study was carried in duplicate, with and without the zeros.

'BASIC STATISTICS

The basic statistics (mean, variance and correlanon coefficnent) were calculated for both varxab]es
with and w1thout the zero values. Table 1. The mean values are much lower when the zeros are
mcluded as is the variance. So the choice of whether to include them in the calculation of the total
resources is crucial. The scatter diagram (Figure 5) of biomass agamst number of molluscs is typi-
cal of highly correlated variables (here the correlation coefficient is 0.95).
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Figure 1. Number of Spisules at each location

1000 2000 3000 4000
3000 1 L ! 1 3000
2800 -1 o 26800

a ? o? R
2600 0 J . 2600
y2
2400 o % 2400
57 9
2t g 39 0
2200 4, 165 od 26h % ; -2200
4oy
2000 - 31y . ° ¢ 2000
0
1800 1 LI 1 0 o - 1800
% 7 26 E ? -

1600 4 © 1T o0k ug 29 ; 0 1600
1400 - ¢ 199 C_? 0 22h 3tk ‘? J - 1400

0 ? s 6

- 0 2 »
1200 o . 53 y . Blg% 1200
1000 D 3 % 0 26 -1000
800 - L 528 1 ub - 800
of 01 ? 2 L3 .
600 - g 5 2 . 0 -600
o .
4oo - o of 400
] ’ T T T
1000 2000 3000 4000

Figure 2. Biomass at each location.
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Basic Statistics Mean Value Variance |
Biomass
(including zeros) 97.66 21501.00
Number of Molluscs
(including zeros) 54.69 - 7899.44
Biomass
(excluding zeros) 163.58 25232.55
Number of Molluscs ;
(excluding zeros) 91.58 . 0854.85

Table 1: Basic Statistics (N.B. the measurements refer to an area of 0.25m2).
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Figure 5. Scatter Diagram of Biomass (on the Y axis) versus Number of Spisules (on the X axis)
VARIOGRAM ANALYSIS

The basic tool in geostatistics for quantifying the spatial correlation between samples a certain
distance h apart is the variogram. The experimental variograms were calculated for both variables
with and without the zeros. These were calculated for a lag of 400m in 2 perpendicular directions
600 N of E and 600 W of N since these are the directions along and across the area. Given the
limited number of samples available it would be illusory to calculate variograms in four directions
(which is the standard procedure). Figures 6, 7 8 and 9.
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FiguAre 6. Experimental Variograms of the Number of Spisules including zeros.
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Figure 7. Experimental Variograms of the Biomass including zeros.
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Figure 8. Experimental Variograms of the Number of Spisules excluding zeros.
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Figure 9. Experimental Variograms of the Biomass excluding zeros.



Variograms intluding the zeros:

The expenmental vanograms for the number of shells and for therr biomass mcludmg Zeros (Figu-
res 6 and 7) behave differently for the two dlrecuons They rise more rapidly in the direction across
the deposit than along it. The vanograms in the direction across the deposit become erratic for
distances above 1200m. Since this is more than half the diameter across the deposnt, this effect need
not be taken into account when ﬁttlng a mathematrcal model to the varlogram Consequently the
variogram model will be chosen to rise up from 0 at a distance h =0 up to a limit value called the
sill which will be taken to be the value of the variance (shown bya dotted line). So the variables
are assumed to be statrstrcally stauonary Exponential variograms models were fitted in both cases.
A model of ¢ geometnc amsotropy was used to take account of the directional differences. The long
axis of the ellipse of amsotropy was in the direction 600 W of N and the ratio between the long
axis and the small one is 2.2 for both variables. The parameters of these are shown in Table 2.

Number of Shells Biomass

Nugget Effect Co 0. 0.
Sill C1 8000. 22000.

Scale parameter a 440m 400m

Table 2: Parameters for the Exponential Models for the case where zero values are included.
These models are'not the only onies that could be fitted to the experimental variograms. To illustrate
this a second model consrstmg of the sum of two sphencals with sills of 10500, and 11000. and ran-
ges of 500m and 1250m, and a zero nugget effect gave an equally good fit for biomass. The anisotro-
pyis the same as before Figures 10, 11a and b show these three fitted models. As these two models
for the biomass variogram are almost identical when plotted (in particular their behavrour near

the origin is linear with no nugget effect) they will give virtually identical results in any subsequent
use.

Variograms Excluding the zeros:
The expenmental varrograms for both variables when zeros are excluded (Frgures 8 and 9) show

two important features:-a sharp rise after 1000m in the direction across the sandbank and a rather
large value for the first variogram class in some cases.

The first effectis due to the presence ofa driftor trend in the values So the variable is not statlona-

ry in this direction for distances above 1000m but this is not rmportant in practice because pomts
more than 1000m away will not usually be taken into account durmg the subsequent estimation
procedure or if they are used, they will have a very low weighting factor.

The second effect (the high value for the first class) is due to the very small numbers of | parrs of
points (only 1!) this distance apart. Table 3 below shows the numbers of pairs of points used to
calculate the varlogram foreach drstance class for both drrecuons These figures show thatwhereas
the vanogram along the length of the area is meaningful up to the sixth class (up to 2000m) the
other one is not. In particular i in both cases the first distance class only contains one couple and
so this variogram point need not be taken into consideration when fitting the model.

After ehmmatmg this vanogram pomt we are faced wrth the problem of choosmg the value for the
nugget effect. It would have been helpful to have had some additional closely spaced samples (e.g
in the form of a cross) toaid in choosmg the nugget effect. These samples should of course be loca- -
ted in a typical area and not preferentially in a rich or poor one.

After takmg account of these pomts a smgle 1sotroprc exponenual varrogram model with nonu gget
effect was fitted in both cases. The parameter values are shown below in Table 4. As before the
choice of a model with a sill indicates that we assume stationarity. Figures 12a and 13 show the

fitted models.
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Distance class Across the breadth Along the length
1 1 1
2 34 46
3 39 66
4 33 69
5 12 80
6 1 76
7 0 51
8 0 26

Table 3: Number of pairs of pomts used in variogram calculations

As before, these exponentlal models are not the only ones the can be fitted to the experrmental
varrograms For comparison purposes a second model consisting ofa spherical model with a range

of 1200m and a sill of 9800, and a zero nugget effect was fitted for the number of spisules (Frgure
12b)

i Number of Shells Biomass
Nugget Effect Co 0. 0.
Sill C1 10000. 22000.

Scale parameter a 560m 440m

Table 4: Parameters for the Exporniential Variogram Model for the case where the zeros are excluded.
GLOBAL Esril’\rA*r'lt)'N

samples (represented by a Owhen there were no sprsules and bya + when there were). One contour
is smoother and covers a larger area than the other (238 x 105 m2 compared to 176 x 105 m2), a
decrease of 25.% . Clearly the difference in the surface ares will be reflected in estimated total
quantities. The change in the contour will also affect the estimate of the mean because the area
eliminated is the low grade border zone. Consequently the mearn for the larger area will be lower
than for the other

made usmg the kriging program BLUEPACK workmg in a unique nei ghbourhood (because of the
small number of points) and the exponentral variogram models shown earlier in the tables. Tables
5 and 6 give the results. One advantage of geostatistics over other estimation methods is that it
gives the estimation vanance as well as the estimated value. Asan example the corresponding stan-
dard devratlon (i.e. the square of this varlance) was 13.3 for a mean of 165.46 for the biomass for
the case where the positive values were used inside the small polygon.

This leads to four sets of estimates for each variable. Which is nght" Two sets of results can be
eliminated lmmedrately those for the positive data inside the large polygon and s1mrlarly forall .
data inside the small one. In the first of these the large polygon covers many of the zero samples,
and so removmg these values before doing the estimates artificially extends the zone of influence
of the positive ones. Clearly this is far too optrmlstlc The second case (kriging inside the small
polygon which encloses the positive zone but including the zerovalues outside this in the estimation
procedure) is less pemxcxous The presence of the zeros outside tends to pull the estimates down-
wards along the boundary, Wthh could be helpful.
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Figure 14. Shapes of the two polygonal contours used for kriging

NUMBER OF SHELLS. Mean Value Total Reserves
Large polygon,
all data 65.0 1550x 106
Large polygon,
positive data 85.9 2050x 106
Small polygon,
all data 78.7 1380x 106
Small polygon, '
positive data - 90.9 1600x 106

Table 5: Estimated global reserves: the number of individuals (N.B. the mean is over an area of
0.25m?2)

BIOMASS Mean Value Total Reserves
Large polygon,

all data 118.8 2830 tons
Large polygon,

positive data 157.8 4560 tons

Small polygon, " :

all data B 142.31 2500 tons
Small polygon,
positive data 165.46 2910 tons

Table 6: Estimated global reserves - the biomass. (N.B. the mean is over an area of 0.25m2)




The remaining two sets of estimates are intellectually consistent, and although the mean values are
quite different the total reserves are similar (less than 3.5% difference). This shows a geostatistical
sort of "conservation of matter”. The total quantity of matter remains the same but is distributed
differently in the two cases. When all the data are considered inside the large polygon the “estima-
ted surface” is flatter on the edges and more peaked in the centre whereas in the other case there
are "cliffs” along the border line between the area with molluscs and the outside. To illustrate this-
the kriged estimates of the number of spisules were obtained at the nodes of a regular grid inside
the appropriate polygon for the cases where the zeros are included and excluded respectively (Figu-
res 15, 16a and b show these for 8 classes of values ranging from -50 to 350 by steps of 50. The
negative estimates are horizontally striped whereas the positive ones are vertically striped. Figure
16a and 16b show two sets of estimates corresponding to the two different fitted models (exponen-
tial and spherical). The differences are very slight except along the edge. Please note that these three
figures show the kriged estimates for point values. It is also possible to obtain estimates of the ave-
rage values over blocks. These are of course smoother.

In many ways the choice between these two sets of results is more one of choosing between two
different interpretations of the variable. If one believes that biological factors have lead to a barrier
between the zone containing the molluscs and the exterieur, then the second case-is appropriate.
On the other hand if one believes that the number of molluscs merely tapers off, then the first case
should be chosen. This choice cannot be made on geostatistical grounds; the biologist must make
this choice from his scientific knowledge of the area and the mollusc. In this case because of the
sedimentological characteristics of the area and the habitat of this species, it seems more appro-
priate to use only the positive values inside the small polygon.

Both geostatistical reserve estimates (2830 + 640 tons and 2910 + 470 tons) compare favourably
with the estimate obtained using classical methods (2600 tons + 600 tons).
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Figure 15: Kriged Results for the Number of Spisules inside the large polygon
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Figure 16a: Kriged Results for the Number of Spisules inside the small polygon using the
exponential model
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Figure 16b: Kriged Results for the Number of Spisules inside the small polygon using the spherical
model



RECOVERABLE RESERVES

Havmg obtained estlmates of the global insitu reserves and dtsplayed the pomt estimates of the
number of spisules, we can now proceed to calculate the quantity that can be recovered. By this
we mean the number of blocks (exploitation areas) where the variable (number of spisules or bio-
mass) exceeds a certain economrcally profitable cutoff. To reduce the workload, since the two varia-
bles are strongly correlated (0.95) we will only present the results for one of them, the number of
sprsules The other would be very similar. Our objectives are to calculate the percentage of blocks

of a given size (points, or 250m x 250m, or 500m x 500m for example) where the number of spisules
is above the cutoff. We also want to know the cumulated quantity above the cutoff.

To illustrate this, suppose that we knew the true values of 10 blocks: 0, 1, 1, 3, 5, 10, 20, 50, 80, 150.
Then if the cutoff is 15 (say), we recover 40% of the blocks with an average grade of (20 + 50 +
80 + 150)/4 = - 75. Although only 40% of the area is exploited we nevertheless recover 300 out of
a total of 320, ie. 93. 75% of the total. In mining geostatistics, the percentage of blocks recovered
gives the percentage of ore recovered (called the tonnage) while the second corresponds to the me-
tal recovered. For want of better names we will continue to use the terms “tonnage” and "metal”
to designate these concepts.

When most people are asked to estlmate the recoverable reserves, they naturally decide to estimate
blocks of the appropnate size using linear kriging or some other estimation method and then to
count up the tonnage and metal above the cutoff. Unfortunately the results are not accurate Linear
kriging (and other estrmatlon methods) smooth the values too much and hence are not suitable -
for calculating recoverable reserves. Special technrques (such as disjunctive kriging and conditio-
nal srmulatrons) are needed for this. The first step in both is to transform the initial distribution
(an arbitrary one) to a standard normal one.

For mathematrcal convenience the transformation functron (or anamorphosrs as 1t 1s called) i is ex-
pressed in terms of Hermrtes polynomrals In principal an infinite number of terms are required
and 17b show the anamorphosis function for the number of spisules (excluding zeros) when 10,
200r30 terms are used. The first figure shows the curve within the range where the gaussian equrva- '
lent goes from-2. to + 2. (corresponding to the central 90% of the normal distribution). The second
figure extends the range much further. In theory the anamorphosrs function must be nondecreasmg
(in order to back transform to the initial scale). In this case the skewness of the raw data distribu-
tion and the peak of identical small values make it difficult to get a good fit. Several tests using
an expansron with 30 Hermite polynomrals were carried out to check the quality of the fit. We calcu-
lated the theoretical hrstogram using the anamorphosrs functionand compareditto the expenmen-
tal one based on the available 40 sample values. Frgure 18. In addition two of the family of grade/
tonnage curves were calculated theoretrcally and compared to their expenmental equivalents.
Figures 19a and 19b show the tonnage recovered (i.e. the area) and the metal recovered expressed
as percentages of the total, as a function of the cutoff. This shows that the anamorphosis function
fits well.

So We can now go on to calculate the conventlonal profit as a function of cutoff. This is defined
as the quantity of metal above cutoff minus the tonnage above cutoff timeés the cutoff grade:

Conventional Profit = Metal - Tonnage x Cutoff

In many ways this corresponds to the reserves that wrll actually be recovered by the fisherman. .
See Figure2l.In addition to this we calculated the metal vs tonnage curve for several different block
sizes; firstly for pomts (i.e. the sample volume), then for blocks 250m x 250m, and finally for 500m
x 500m blocks. From Figure 21, we see that if we exploit the richest 50% of the blocks (i.e. tonnage

= 50%), we would recover 97%, or 92%, or 85% respectively of the total, dependmg on the size
of the explortatron areas. This gives an indication of how much less selective the operation becomes
as the block size is increased.
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CONDITIONAL SIMULATION

Conditional simulations are designed to reproduce the spatial statistical characteristics of the data
(i.e. the variogram and the hlstogram) and to go through the sample points (for a point simulation).
The methodology is explained in most geostatistical textbooks. It consists in transformmg the data
to normality (as before), simulating a normal distribution with the appropnate characteristics, con-
ditioning it to respect the data and then back—transformmg Clearly the variogram of the gaussian
equivalents is not necessarily the same as that of the raw data. In this case the fitted model (Figure
22) for these was a spherical with no nugget effect, with a range of 1000m and a sill of 1.0 (equal
to the variance of the standard normal). Tests were carried out to check that this matched with
the model fitted earlier for the corresponding raw data. The simulation was carried out for 112
pomts on a regular 200m x 200m grid lying inside the small polygon. One such simulation is presen-
ted in Figure 23. It is instructive to compare this with the corresponding kriged maps (Figures 16a
and b) which are, as expected much smoother.

A total of 100 simulations were made and the global statistics for these were counted. Fxgure 24
shows the inverse cumulated histogram of the mean number of spisules per unit area obtained from

each of the 100 simulations. This can be interpreted as giving the probabxhty that the average num-

ber would exceed a specified value. Clearly the mean of this histogram is just the kriged average

obtamed earlier. This histogram gives more meanmgful confidence intervals than those obtained

as the kriged value plus (and minus) twice the standard deviation. »
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Figure 23. One Simulation of the Number of Spisules
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DISCUSSION AND CONCLUSIONS

This preliminary report was designed to show how geostatistics can be used for assessing the reser-
ves of sedentary species. The objective of this study was primarily pedagogical. In this case it was
used firstly to calculate the total reserves and the average grades in a Spisule deposit near the Ile
d’Yeu on the Atlantic coast of France. Two variables were studied the number of individuals and
their biomass (in g/0.25m2). As the area containing the bivalves is clearly delimited by zero grades,
we studied the impact of including or excluding these zero values. It was found that the total reser-
ves were the same when the reserves were calculated using data including the zeros in the large
polygon covering the whole area, as those obtained in the area containing positive values using only
the corresponding data. These figures are in good agreement with previous estimates made using
classical estimation methods. However the average grades were markedly different.

In addition to obtaining the estimates and the corresponding estimation variances using kriging,
more advanced methods involving Hermite polynomials were used to estimate the recoverable re-
serves as a function of three possible sizes of exploitations blocks. This highlights the importance
of the size of these blocks on the selectivity of the operation. Lastly 100 conditional simulations
were carried out. One of these is presented to show how much more variable the number of spisules
could reasonably be expected to be, compared to the corresponding kriged maps. The histogram
showing the average number of spisules for each of the 100 simulations gives us an idea of the preci-
sion of the estimated value.



