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If it may be assumed that a length distribution consists of a

sum of normal-distributions, one for each year class, then
deconvoluting the length distribution with a normal-distribution
having a variance v, has the effect of making the variances of all
the year classes smaller by the amount v.

- Thus it is possible in one operation to reduce the overlapping
between year classes.

In the real world the length distribution of a given species is
not known but only a finite sample from it. Instead of just
grouping the measurements into some intervals, we propose a dif-
ferent method based on filtering, where we try to eliminate high
frequency. fluctuation in the measured length d1tr1but10n that can-
not be told from random varlatlons. :

It is shown through a number of examples that these methods are
applicable to real data, (length ditributions for cod, haddock

and shrimp) collected by the Marine Research Institute of Iceland.
These methods are computationally not difficult and can be fully
automated.

INTRODUCTION

It -is well known that the size distributions of fish have peaks
due to different year classes, ref (3). These peaks are very pro-
nounced for the younger fish, but as the fish grews older the

overlapping'between the year classes increases. This is mainly

~due to reduced growth of fish with age but also because of in-

crease in variance in size (length) of each year class.;

Methods that take advantage of this fact have long existed for


funk-haas
Neuer Stempel


2
deriving information on mean lengths and proportions of different

year classes from size distributions only ( the Petersen's method
ref (3), the deviation method ref (6),(5))..

Since otolithic age determinations became common, those methods have
decreased in importance and are considered by many tpibe obsolete

or at best old-fashioned curiosities.

It is the belief of the author of this paper that by the near

extinction of these methods in.fishery sciences much has been lost,
especially in that critical graphical presentation of data has given

way to mean values of lengths and proportions that pop out of "age-

sumptions that they are based on hold, which typically they do not,

which can often be seen if one inspects the length distributions.

The methods that we are about to present are not intended to
replace otolithic age-determination but rather to supplement it

to get an immediate idea of what information a given length distri-
bution contains, to increase confidence in calculated values,‘

and of course if no otolithic age-determinations can be obtain-

ed they can be of aid in determining the mean length and proportion

of a given year class.

THEORY

It is a common assumption that each year class in a length distri-
bution of fish has a normal length distribution and we will assume
that also. We state this formally using an a for the age, using
p(a) for the proportion of fish of age a, u(a) to be its mean and
v(a) the variance. |

N
(1) P(x)= SUT p(a)Q( (x-u(a))/+v(a) )
a=

length computer programs". These programs work well enough if the as- .
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' Where P(x) is the probability density function of the number
of the number of fishes of length x. @(x) is the normal-
function having the mean zero and vafiance 1.
The characteristic function for this distribution is easily
obtained by finding the Fourier-transform of eq.{(l) and is
equal to: (The Fouriér-transform of a normal function is a
normal function.)
- N 2 -
(2) P(w)= Sum p(a) Exp(-w v(a)/2) Exp( i u(a) w)
‘ a=1 .
" Where w is the frequency, i is the square-root of -1, and the
bar over P denotes the "Fourier-transform of:".
Equation (2) can also be written as:
.- 2 N 2 -
(3) P(w) Exp(w v/2) = Sum p(a) Exp(w {(-(v(a)-v)/2) Exp(iu(a)w) = P (w)
. a=1 . -

9

. Wﬁat we now have, on the right hand side of the equation, is the
characteriétic function‘of a length distribution that has year
classes with the same means and proportions as the original
distrithion but has reduced variances and thus less overlapping.
The variances are reduced by v,'which'is some- arbitrary amount

but must be less than the smallest variance in the original

distribution.

Using a star "*" to denote a -convolution we have:

(4) P(x) = Q(x/{Vv) * SUT p(a) @( (x-u(a)Hv(a)-v)
. a= ) N



' Or:

(5) B(x) = Q(x/{¥) * P (x)
. N -ty

To reduce the variances. of all the year classes by v, equation
(5) needs to be solved.. ( Equations of this kind are not
totally unknown to fishery scientists.: The "Craig and

Forbes" equations are of.the'same kind'with the.tafget strength

-distribution playving tne'role of P‘ and the "d1rect1v1ty

=V
dlstrlbutlon playlng the role of Q(x/{"), ref (1). )

AuIt‘is'impqrtant to note that-éven,if the year classes are not

gnormaily.distnibuted, there is‘a'gdod»Chance'that eq.(5) holds

for not too big\a reduction'in variance.

Each year class does not need to be normally distributed but only

to consist of a. distribution that may be obtained through a con-
volution of a normal dlstrlbutlon w1th another distribution.
For- instance 1t.1s likely that the error resultlng.from 1naccu-

rate measurement of each fish contributes to such a convolution.

To sélve‘equatibn\(S) it would be best to use all available in-

formatlon such as the known fact that P (x) can not be negative
-v
and all the avallable 1nformat10n on the growth of the fish

spec1es at hand should ideally be used.

Neve;theieSs we will here only éolve (5) using straight-forward

and fast methods.

It is obvious that it would be simple to calculate the numerical

Fourier-transform of a measured length distribution to obtain

the characteristic function of the distribution and then to
2

divide that function by Exp(-wv/2). The inverse Fourier-transform

i
[
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: shoﬁld then yield the same distribution with reduced variances. 5

! mh:c 1a totally anloqgous to the way the Cralg and Forbes
equatlons are usually solved, even if the deconvolutlon

is usually done in the “tlme-domaln.)

‘The problem with this is that we don't know the exact length

distribution, but only a sample from it, and the usual method of
grouplng the flshes into intervals results in a distribution

that is certainly not composed of.a sum of normal dlstrlbutlons

- only. (Because of inaccuracies).

The value of the length-distribution in each interval is only
known with 11m1ted accuracy .

How to handle th1s 1naccuary is the biggest problem in solving eq.
(5),'the'method that we have chosen will be discussed in the

next chapter.

The Practical Algorithm

— e - G G — - —— — —— " G Y= - G Gt G —

The measuted length distribution may be thought of as beeing com-

posed of two distiibutioqs, one is the correct length distribution

' (divided into ‘intervals) and the other is an error function ,and

if we tried to deconvolute the measured length distribution using
the above described method;.this errdr‘functioh would dominate the
output.

To inereaSe accurecy in each interval the usual method among
fishery scientists is to méke.them wider and fewer, but since

this has the effect_df increasing the variances of each year.
class, (which is opposite to what we want), we don't do that.
Also, this.may intfoduce what is kdown in digital signal
proces51ng text—books as "a11a51ng I

If the square-root is taken of the measured length distribution,
then it is a good apprqximation ( if the number of fishes in the

interval are 10 or more) to‘assume»thét the error in each interval

~is constant with std.dev. of size 1/2. After taking the square-root

we are left with two functions added together, one is the square-
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root of the length distribution and the other is an uncorrelated .

error function, containing no information on the size distribution.

We will try to remove as much of this error fuhction as possible
without harming the square-root of the lengtﬂ—distribution. We do
this by calcuiating the Fourier-transform. The error function has
equal chances of having. power in all frequencies and we can calcu-
late tﬁe pfobable sizes of this power, using the fact that the

sum of squares for E(x) and E(w) is proportional, where E is the

error function, ( the Parseval theorem ).

Then we put the power of all frequencies to zero if it is not
appreciably higher. than what could be expected from the error .
function. The square-root of the length distribution.is a

low frequency function with its power rapidly diminishing with

higher frequencies and the error function has equal pbwer at

Call frequencies. So what we really do, ié to low-pass filter

the data. We only have to find the frequency for which the

power in all higher frequendies could have originated by chance,

and set this power equal to zero.

After the measured square-root of the measured length distributi-

on has been cleaned in this Qay it-is squared to obtain a smoothed
approximation to the real length distribution. This function could "
then be Fourier-transformed and deconvoluted with a normal distributi-
on having a variance v, to reduce the overlapping between year-

classes.

All our -numerical problems are not solved by the above described
. ;00 5

smoothing algorithm. Numerical error will seep in again when the
the function is squared and the Fourier transform is taken, so in-

2
stead of dividing the Fourier transform with Exp(-v w /2 ) we add a
2

small constant and divide with Exp(-v w2/2)+Exp(-v m /2) where m is
“the highest frequency that was let through when we smoothed our data,
Frequencies above m are not worth much, and this will make sure

that they are nqt excessively amplified. This constant has usually a

very low value and will change litfle but for the frequencies above



m, ( When the function is squared ; power is invoked again in
frequencies between m and 2m, this does not add real resolution

however ).

This last filtering may seem to be too arbitrary to many, a method
that would seem more justifiable would be to put all power above 2m
to zero, since tﬁeoriticdlly there should be none. But experiment-
ally this approach has hot yielded as nice outputs as has this one.
In our programs there is an option on which approach to use.

If v is well beneath the largest variance in the distribution there

is little difference in these two approaches.

This algorithm may seem complicated , which is because the problem of
getting rid of the error is complicated. Really this is a very simple
approach, we employ it because it is non-iterative, numerically

casy and seems to give acceptable results. It is best demonstrated
through examples which will be given in the next chapter.

(We have tried to avoid messing up this baper by mentioning number

of things that could improve this algorithm, such as using "win-

dowing", and using iterative processes.)

We sum up the method as follows:

1 Group the fishes into length intervals, preferably not
too wide (see 4) and so that at least 10 fishes are in each

interval on the average.

2 Take the square-root of the resulting distribution.

3 Calculate the Fourier-transform of the distribution in 2.

4 Find the frequency, m, above which all power in the Fourier

transform could have resulted from the inaccuracy in the



measured: length distribution, and put all power above it to

zero. (

quency cannot be fohnd and aliasing‘has been introduced ).

We have

e

If the intervals have been choosen too wide this fre-

done this visually, an automatic method has not yet

been implemented into the programs.

5 Calculate the inverse Fourier-transform.

6 Square it. (The resulting distribution is our smoothed version

of the length distribution).

7 Calculate the Fourier-transform. .

2 2

8 Divide it with Exp(-w v/2)+Exp(-m v/2), where v is the reduc-

tion in

the variances of all the year classes that is sought for.

9 Calculate the inverse Fourier transform. What we now have is

the distribution with reduced variances.

As can be
These are
transform

use Basic

seen there are a number of Fourier-transform calculations.
straight-forward to do, using some of the Fast-Fourier-
algorithms in the litterature, but since we prefer to ‘.

as a programming language and very few good FFTs exist

for that languge, we have written our own FFT that optimizes the

number of

additions as well as multiplications and is therefore

especially fast running interpreter BASIC. There should be no

machine on which the above algorithm would run too slowly. ( A 64-

HRO

agy
point FFT costs only #68 real multiplications and 3352 real addi-

tions).

A listing of our computer program is given in the

appendices at the end of this paper.



EXAMPLES AND DEMONSTRATIONS

To demonstrate and test the above algorithm we begin by simulating
& length distribution that could have been obtained for shrimp
growing up at Iceland's North-West coast (in march). We use the fol-

lowing parameters. ( table 1) ( Values chosen by Unnur Skuladottir)

Table 1

Year | Mean- Standard- Proportions
class length (mm) deviation

1 11.6 .9 21

2 15.3 1.0 ‘ 34

3 18.4 1.05 25

4 21.0 1.1 ‘ 15

5+ 22.6 1.1 5

This distribution is drawn in figure 1.

We choose to sample 1500 shrimps randomly out of this distribution
and to group them in half-millimeter groups. ( This is common
practice at our institute).

The sampled distribution is shown in fig.2.

The square-root of it is shown in fig.3. This function is compos-
ed of the square-~root of the length distribution plus som random
error that is very nearly uncorrelated and not a function of the
length distribution. The error has a standard devitation equal to

1/2 in each interval.

The size of the Fourier-transform of the function in fig.3 is
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shown in fig.4. This is the Fourier-transform (DFT) of the square-

root of the length distribution which is a low-frequency function
plus the Fourier-transform of the error function. The error function
is equélly likely to have power in all frequencies, so all the
power in higher frequencies‘belongs to the error function.

We have drawn on the figure a line representing the mean value of
the power of the error frequncies. (This value is calculated
before-hand using the Parsgval theoren).

It is obvious that all power above 11 could be accounted for by
the error function and thefefore‘cbntains no information on the
length distribution, this power is therefore éut to zero and

the inverse Fourier transform is calculated and displayed in
figure 5. As can be seen there are negative values in fig.5

which we put to o.

The function in figure 5 is squared and the result is shown in:
fig.6. This is then, the smoothed version of our sampled distri-
bution. Note the similarity with fié. 1. Even if fig.l and fig.6
seem alike there is much more resolution in fig.l and there may
not be enough resolution left in fig 4. to distinguish between all
the year classes. (The resolution is reduced by 12/32 since only
the 12 lowest frequencies were"kept when smoothing and a 64 point
DFT‘Was used, which gives 32 useful frequencies.)

Next the Fourier transform is taken of the distribution in fig 6.
It is divided by Exp(-v w2/2) and the inverse transform taken (v
is here set to 0.81, to reduce the variances by 0.81). The result
is shown in fig. 7. And it is seen that the first four year clas-
ses stand out clearly with the correct mean lengths, but the fifth

year class can barely be imagined. This is a great improvement

over fig.2 from which it is derived.

In appendix B we do this twice again using the same data as in
table 1. but using other random samples from- the distribution, to

show that fig. 7 is no coincidence.



* We'll now demonstrate using real samples from shrimps caught in 11

"Isafjardardjup”, the Marine Research Institute has collected from
this fjord in North-Western Iceland a large émoﬁnt_of data on a
month to month basis fdr the last 10 years. Figﬁre é sﬁowé us the
length distribution of 5084 shrimpé caught in February 1984, they
are grouped in .5 mm intervals; The first peak belongs to the 19-
82 year class. (We db not display a few shrimps belonging to the

to the 1983 year class).

The size of the Fourier transform of the square-root is displayed

in fig. 9. It is seen that only the 14 lowest.frequencies have
power that is appreciably higher than the error.

Figure 10 is the smoothed distribution deconvoluted so a§ to lesseq
the variances by .7 mm? It is seen ‘that four peaks stand out and

we have marked them with the name of tﬁe year classes that we belief
they belong to. It is also seen that there is a false peak Jjust
before the 1982 year class, which is because this year class has a
variance that is close to .7mm?

'Real confidence in what we see in such distributions is only obtain-
able'by looking at a series of the distributions in time. In doing this
the human eye outperforms any computer program in detecting trends
and patterns. So let's look at the distributions a month earlier'and
one year earlier.

Figure 11 is the distribution of 1705 shrimps from this same fjord
in January 84, and fig.12 is what it looks like after our analysis.
Figure 13 is the distribution of 6844 shrimpS>fr6m the previous year
February 1983, and fig 14 is what it looks like after similar ana-
lysis.' | |

In general one can expect more resolution when the number of shrihps
is increased.: Buﬁ often greater number is obtained by 1enghténing
the‘sample period and increasing the éea area, which then contri-
butes to increased overiapping between year clasées. ( The shrimps

grow while one is sampling and there may be added other growth stocks
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of shrimps by increasing the area.)

Shrimps are an important example to look at since there is no other
known way for age determination of them other than analysis of their
size distribution. We will now look at commercially a more important
species.

Fig 15,17,19,21 and 23 are length distributions of cod collected by .
the Marine Res. Institute of Icel. off the North and East coast of
Iceland ref (2). Figurés 16,18,20,22 and 24 show those same length-
distributions when they have been nonlinearly filtered (10-14 lowest
frequencies were kept, we used 128—point discr. Four. tr.), andJéecon—
voluted using v®10. More deconvolution would have caused false peaks
when the first year-elasses which have the least variations in lengths
had split up. We have not done anything to the youngest year classes
if those were already non-overlapping with the rest of the length-
distribution. _

The question arises whether one can have any faith in peaks thet

stand out after mathematical manipulétions like these. The answer is
no. Only if there is a basis for a peak in the original distribution,
will a peak in the deduced distribution be worth anything. It is our

belief that the eye is a very clever signal processor and it should be

used together with common sense to inspect the original distribution .

to verify whatever has been deduced.

We have marked all ihe year classes with their age, we weuld not have
been able to do tﬁis but for the first three years with any confidence,
had we not had age-determinations from otoliths for comparie;on.

There are many igteresting features in these length distributions,

such as that the ihree year old cod gets smaller between February

and May (this was also seen in the otoliths) and that almost all its
growth is in May to August, and an especially good érowth too, the
first and second year grows more eveniy. It is interesting to see

how the proportions of year classes varies but this is not to be

the subject of this paper. We will nevertheless add, that in other
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years tﬁe young cods seem to behave diffeféntly.

What we want to emphasize is that one can get somewhat a feel of
seeing what is happening by inspection of the length distfibutions
and even if this often confronts one with puzzles there is a false
security in just getting one figure for the proportion of a year |
class caught in one year and its mean length. -

We end these demonstrations by displaying two length distributions
for haddock. Fig. 25 shows the length distribution of 3408 haddocks
caught off the North-Western coast of Iceland between 23. of February
and 8. of March 1984. Fig. 26 shows what this distribution looks
like after our analysis,‘(variances have been reduced by 6 cm?
the first year class was left untouched and only the 16 lowest frgqu-
encys had power appreciably higher than the error).‘ We have marked
the peaks with their appropriate age, those were compafed to otolithic
age determinaﬁion and found to be resonable.

Fig. 27 shows the distribution of 2229 haddqckskcaught in the same
survey off the eastern coast of Iceland only half a month later.

Fig. 28 shows this distribution after similar analySis,’and again we
have marked the peaks with their appropriate year class. Otoliths were
also collected for these haddocks and the peaks correspond nicely to
the mean lengths of the year classes. It is striking how dissimilar
the mean lengths are for those twd areas,land it is.clear that great
care has to be taken when putting together age-length keys for use on
commerqially caught haddock from the otoliths collected in this sur-

vey.

CONCLUSIONS

We have pointed out that it should be possible to decrease overlapping
between year classes in fish-length distributions by deconvoluting them
with a normal function. We have-also stated that there are practical

numerical problems in doing so, and we have demonstrated a éimple ap-
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proach for solving those. ‘This problém of forming a practical method
for deconvoluting functions given restrictions, such as that the out-
put should be positive and given.the properties of the error, are well
known in other sciences. Because of our incomplete knowledege of this
field we are nevertheless not able to give any references to good
appropriate methods, but we must say that attempts have been made to
solve equations of the same kind as eq. (5), using far‘more sophisti-
cated methods than what we have used. (

As a first attempt of bringing signal processing into fishery

sciences, the results in this paper seem to be promising.

REFERENCES

————— t— O o o

1l Craig,R.E. and Forbes, S.T.'69. Design of a sonar for fish
counting. Fisk.Dir. Skr.Ser. Hav.Unders.,15 (3): 210-219,1969.

2 Palsson, Olafur K. Studies on recruitment of cod and haddock in
Icelandinc waters. ~ICES C.M. 1984/6:6

3 Petersen,C.G.J. 1892.'Fiskens biologiske forhold i Holb. Fjord,
1890-1891. Beretning fra den Danske Biologiske Station.

4 Schopka S, Steinarsson B AE, Jonsson E. Preliminary report of
groundfish surveys in Icelandinc waters in spring and autumn
1982 and spring 1983, ICES C.M.1983/G:28

5 Skuladottir, U 1979. Comparing several methods for detecting
year-classes of population of Pandalus borealis from length
distribution. In Proceedings of the international Pandalid shrimp
symposium, Feb.-13-15 1979. T.Frady (ed),US. Sea Grant Rep., No.
81-3:283-307.

6 Sund,0 1930. The renewal of fish populations studied by means of
. measurements of commercial catches. ICES Rapp. Proc.-Verb.,65:10-
17.




0 is 21 as 39 ww
Figure 1 ]
The true distribution using the values in table 1.

9 5 0 5 30
Figure 2

The'distribution of 1500 "shrimps” sampled out of
the distribution in fig. 1.

ST



[ 20
Figure 3 ‘
The square-root of the s

A8 30
ampled distribdution.

The size of the 64 point DFT of the
in fig-}.

function

91



is . 20 a2s 30

K {o

, Fig.5
The inverse tranform of fig.4 (High freg.power set to O)

17




18

19 Fig:g 20
The function in fig.5 squared.

25 .

3¢



0—1;-

nnLLAllLlllll. AL A A jlll«xlllLln‘Allllnxlnl llllllLlllllj_‘
L3 ) ) L3 L] L

4 10 ' YR 24Q 25 . 30
Fig.T

The function in fig.6 deconvoluted.
%negative values put to O)

19



20

o 5 10 5 20 25. 3¢
Fig.8 5084 shrimps in Feb.84

-:5\ -10 —5’ [+ s 16 15
Fig.9 The size of the 64-point FFT
82

o £ 10 'S 2.0 25 30 mm
Fig.10 After reducing the var. by .7



21

32
2
0 5 10 Is 20 25 3omm © 5 10 5 2‘0 25 30 mm
Fig.11 ‘Fig.12
1705 shrimps a month earlier. After deconvoluting.
8D
3l a9
5 10 5 ?b, 30 Homm © 5 10 15 20 25 30 MM
. FPig.,13 Fig. 14

6844 shrimps a year earlier. After deconvoluting.




22

. . §
0 10 20 30 W3 50 60 0 80 90 to¢ © 10 20 Jg 40 §0 6C 0 2 o 10

Fig.15 Fig.16
6080 cods in Feb.76

33
K] 2
25 17‘
C 1o 20 30 40 50 60 6 29 906 100 0 10 20 36 o 56 €5 3¢ €0 9o 0q
o, Fig.17 . Fig.18
4268 cods in May 1976 ‘
N
¥4
[
4 75 *1
o ja 20 30 4O 50 G0 FC §C ¢ g MO 126 : © 10 20 39 40 56 60 0 4G 90 100
Fig.19 A ‘ Fig.20

4475 cods in Aug. 1976



xS

O 10 20 30 4¢ 50 60 30 €0 9¢ 100 G 10 20 30 4G SC 60 ¥C £ Q0 joc

Fig,21 Fig,22
5524 cods in March 1977

BT 35
ﬂ | -
N
EA
© 10 20 30 HO SO €¢ 3¢ §0 QU 0o o 10 2¢ 3‘0 4 5C ¢ 30 Q¢ o e
Fig.23 Fig.24

6332 cods in March 1979



24

gt
83 80
9
82
© 10 20 30 Yo 50 60 70 QO ) cm © 19 26 30 40 50 ¢0 70 80 e
Fig.25 Fig.26
3408 haddogks north-west off
Iceland,

W i

© 10 20 36 40 50 G0 70 80 cm ® 10 20 30 40 S0 <0 70 30 cm

Fig.27 Fig.28
2229 haddocks east offIceland.



10
20
30
40
S50
40
70
20
Q0
100
110
120
130
'.ﬂ40
150
160
170
180
190
200
210
220
230
240
230
260
270
280
290
300
310
320
"@30
40
350
340
370
380
320
400
410
420
430
440
450
451
452
453
454
455
4546
457

Appendix A

DIM D(128)9y85(16)+81(16),82(168)
FRINT * An interactive srodram for smoothing and sharrening®
FRINT * size distributions®

25

FRINT * Coruright 84 Marine Research Institute of Iceland® \ FRINT

PRINT "Enter 3 number that is a rower of two and is larder®
FRINT "than the number of entries 1n the fish-distribution®
INFUT N .

Q2=1/80R(2)
GOSUER 1450 \ REM Calculate the multiplercoefficients

FRINT * MENU®™ \ PRINT
FRINT " O DISFLAY MENU"
IF I8=0 THEN FRINT " 1 INFUT DATA"

*J

SQUARE-ROOT®
FAST FOURIER TRANSFORM®
PUT HIGH FREQUENCY FOWER TO NULL®

IF I8=0 THEN FRINT 2
3
4
S5 INVERSE FFT"
é
7

IF I8=0 THEN FRINT
IF IB=1 THEN FRINT
IF I8=1 THEN FRINT
IF I8=0 THEN PRINT
IF I8=0 THEN FRINT
FRINT * 8 DISFLAY DATA®

IF I8=1 THEN FRINT " 9 - DIVIDE EXP({-wwv)+EXP(-wum)"
IF I8=1 THEN FRINT * 10 DIVIDE EXF(-wwv)"®

PRINT * 11 QUTFUT DATA® "

PRINT * 12 STOF®" N\ PRINT

FRINT "ENTER OFTION NUMBER® \ INPUT C \ C=C+1

PUT NEGATIVE VALUES TO NULL*""
SQUARE DATA*

ON C GOSUER 100!280:430!850:450!770;5101u30r1510:550r6°0r690:7”0:3000

FRINT “"DONE*

GO TO 240 _

FRINT "Enter name of raw data file® .

INFUT A% \ OFEN A% FOR INFUT AS FILE #1

FRINT "How many entries are there in that file®" \ INPUT N3
FRINT "What is the width of each interval® N\ INFUT B -

TS=0 \ 1I8=0

FOR I=0 TO N3-1 \ INFUT #1,D(I) \ TS=TS5+D(I)

FRINT D(I)»IXE \ NEXT I

FRINT "First non-zero interval®; \ INFUT MS

FOR I=0 TO MS/B-1 N\ D(IX=0 \ NEXT I ‘

PRINT "Last non-zero interval®; \ INPUT Mé \ E=SQR((M&- Mu)/B)/“

FOR I=M&/B+1 TO N-1 N\ D(I)=0 \ NEXT I
FRINT *Number of measured fishess"»TH
CLOSE #1

FOR I=N3 TO N-1 \ D{I)=0 \ NEXT I

RETURN

FOR I=0 TD N-1 N\ D(I)=8SQR(D(I)) \ NEXT I
RETURN

FRINT " IF SQR HAS BEEN TAKEN THE STD.DEV OF THE NOISE IS *;
FRINT .E

FRINT * OTHERWISE IT IS EQUAL TO THE SQR OF THE NUMBER OF FISHES";

FRINT SQR(TS) \ PRINT
FRINT * USE THIS INFORMATION TO DETERMINE WHEN IT CAN NO LONGER®

FRINT * BE ASSUMED THAT THE FDWER BRELONGS TO THE ERROR FUNCTION®
FRINT * —-- NOTE THAT IF THE SQUARE-ROOT HAS BEEN TARKEN» AND IF* -

FRINT * THE NUMBER OF NON-ZERO INTERVALS IS Ky AND A N-FOINT FFT °*
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458 FPRINT * HAS BEEN TAKEN THEN EVERY K/N VALUE IS UNCORRELATED. *

459 PRINT ® THE REST MAY BE THOUGHT OF AS BEEING INTERFOLATED. °®

460 FRINT ' BEWARE OF DIGIT FPREFERENCES !'® \ FRINT

4461 FPRINT *REAL FPART®»"IMAG"s*FREQ"

462 FOR I=N/2 TO O STEF ~1 N\ PRINT D(I)sD(N-I)»I \ NEXT I

470 FPRINT *WHAT 1S THE HIGHEST FREQUENCY THAT YOU WANT TO USE®

480¢ INFUT Mé »

490 FOR I=Ma+1 TO N/72 \ D(I)=0 \ D(N-I)=0 \ NEXT I

500 RETURN

B510 FOR I=0 TO N-1

512 IF DCIY<0 THEN D(I>X=0

16 NEXT I

H20 RETURN

530 FOR I=0 TO N-1 N\ O(IX)=DC(I>"2 \ NEXT I

540 RETURN , ,

550 PRINT "DECREASE IN VARIANCE® \ INFUT V "
5460 S=S5QRVI/B \ O=EXF{-2X(SXPIXM&/N)"2)

570 FOR I=0 TO N/2-1 \ XsEXP(-2X(SXFPIXI/N)"2)

980 DIN-I)=D(N~-I)/(X+0)> \ IKI)=D(I)/(X+0)

H90 NEXT I ‘

G600 X=EXP(=2%(SXFI/2)72) \ DI(N/2)=D{(N/2)/(X+0)

610 RETURN ‘

620 PRINT "DECREASE IN VARIANCE® \ INPUT V

630 S=5QRV)/B

&40 FOR I=0 T0O 2%Mé \ X=EXF(-2X(SXPIXI/N)"2)

650 DIN-I)=D(N-I)/X \ IKII)=N(I)/X

&40 NEXT I

680 RETURN

&90 PRINT *ENTER A FILENAME®" N\ INFUT A$ \ OFEN A% FOR OUTPUT AS FILE #1
700 FOR I=0 TO N—-1 N\ PRINT #1,D(I) \ NEXT I \ CLOSE #1

710 RETURN '

720 STOF

730 REM This srodram calculates the inverse transform of real secuence.
740 REM The real rart is stored in D{(i). The imaginary rart in D(N-i)»
750 REM the same vecto.(Only half of them need to be stored). On outrut
760 REM the real secuence is in this same vector.

770 FOR I=1 TO N/2-1 N\ X=DC(I) \ Y=D(N-I) \ DCI})=X-Y N\ D{N-I)=X+Y \ NEXT I
780 GOSUE 850 - '

790 FOR I=1 TO N/2-1 \ X=DCID)/N \ Y=D(N-I)/N \ D(I)=X-Y \ DMN-I)=X+Y \ NEXT I
800 I(N/2)=D(N/2)/N \ DI{0)=D(0)/N '

810 RETURN

820 REM This is a FFT the inrut seauence ( must be resll)r is stored
830 REM in ID(i)» on outrut the reazl rart is in D(i) and the imasd.

840 REM imn D(N-i). Only half of each needs to be stored.

850 GOSUE 1340

860 I8=1-1I8 \ L=0

870 IF N=4 THEN 1220

880 N=N/2

890 GOSUR 870 ~ :

Q00 L=L+4N . .

$10 GOSUR 1000

P20 J=L+N N\ K=L \ L=L-N

Q30 Y=I(K) \ X=D(L) N\ D(KY=X~-Y \ D(L)=X+Y



240 FOR I=1 TO N/2-1 ‘
950 X=DC(L+I)Y \ Y=I(K~-I) \ Z=IK+I) \ W=D(J-I)
9260 D(R-I)=X-Z N\ D(L+I)=X+Z \ D(h+I) W-=Y N DCI-IY=Y+UW
270 NEXT I
Y80 N=NX2
990 RETURN
1000 IF N=4 THEN 1220
1010 N=N/2 oo
1020 GOSUR 870 ‘
1030 L=L+N
1040 FOR 1I=0 TO N/2-1
1090 K=L4N~-I-1 N\ X=DCL+I) N DC(L+IX)=D(K) \ D(KR)=X
1060 NEXT I
1070 GOSUR 870
‘.080 Li=L4+N N\ K=L \ Ki=L N\ N2=N/2 \ L=L-N
1090 X=DC(L)Y \ Y=D(K) \ Z=D(L+N2) \ W=D(K+N2Z)
1100 DCLY=X+Y N DCLAN2)=(Z+WIXQZ \ D(K)=X~-Y \ IN{K+N2)=(Z- u)*a°
1110 M=N4A/N \ H=M -
1120 FOR I=L+1 TO L4+N2-1
1130 S=S(H) \ S1i=81C(H) \ S2=82(H) \ H=H+M \ K=K+1 \ Kl=K1-1 \ L1i=L1-1
1140 R1=D(IY+D(KY \ RE2=D(K1)-D(L1) \ Ci=D(I)-D(K) \ C2=D(KL1X+D(L1)
1150 Bi=(R1-C2)%X5 \ G2=(C1~R2)%8 \ F1=R1%82 \ F2=C1%52 \ H1=C2%81 \ H2=R2%S51
1160 DR =GL+H1 \ I(IX)=6G14+F1 \ D(K)=G2+F2 \ IN{L1)=G2+H2
S 1170 NEXT X
1180 N=NX2
1190 RETURN
1200 REM
1210 REM This is a routine that calculates the transform of 4-raints
1220 Li=L+1 N\ L2=L+2 \ L3=L+3 ~
1230 R=DCLYHDCLLY N IKLL)=DCdL)-D(L1)
1240 R2=D(L2)+D(L3)Y N DCL3)=DCL2)-DL3)
1250 D(LIY=R+R2 \ DB(L2)=R-~R2
1260 RETURN
.270 REM
1280 REM This rouitine calculates the FFT of 4-roint odd-secuence
1290 Li=L+1 N\ L2=L+2 \ L3=L+3
1300 R=DC(LY N X=R+DCL1)Y \ Y=R-D(L1)
1310 R=D(L2)Y \ Z=R+IN(L3) \ W=DN(L3)-R
1320 DLY=X+Z \ D(Li)"(Y+w)*G“ N DL2)=X~Z \ DI(L3)=(Y-WIXNR2
1330 RETURN
1340 REM This is a bltrever51ns subroutine.,
1350 L.1=0
13460 FOR I=1 TO N-1
1370 NZ2=N
1380 N2=N2/2
1390 IF L1+N2>=N THEN 1380
1400 L1=LI-INTC(L1/N2)XN2+N2
1410 IF Li<=I THEN 1430
1420 R=DICI> \ D(I)=DCL1Y \ D(L1)=R
1430 NEXT 1
1440 RETURN
14%0 REM This routine calculates the multirpliercoefficients

1460 N4=N/4



28

1470
1480
1490
1500
1510
1520
13530
1540
1550
1560
1570
1580
1590
3000
3010
3030

R=2%FI/N :

FOR I=1 TO N/8 \ C=COS(IXR) \ S=SIN(IXR)
S(IY=8 \ S1(IX)=C+8 \ 82(I)=C-8 \ NEXT I
RETURN

X=0 \ ¥Y=0

FOR I=0 TO N-1

IF X<D(I) THEN X=D(I) \ IF YxD(I) THEN Y=D(I)
NEXT I-

FOR I=0 TO N-~-1

FOR J=Y/(X-Y) TO D(IIX60/(X-Y) \ FRINT *"X®"# \ NEXT J
FRINT IXE

NEXT I

RETURN :

S=0\FOR I=0 TO N~-I\S=S5+D(I)T2\NEXT I

FRINT S¥2-D(0)-DN(N/2)

RETURN
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Appendix B
Two simulations more using the values in table 1
B A e ¥ m e 5 e 5 2¢ 25 3o MM
A sampled distribution After the deconvolution
’ 28 30 ) s 10 IS 20 28 3O

Another 1500 lengtls sample After the deconvolution



