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~ ABSTRACT

•

If it may be assumed that a length distribution consists of a
sum of normal-distributions, one for each year class, then
deconvoluting the length distribution with anormal-distribution
having a variance v, has the effect of making the variances ofall
the year classes smaller by the amount v.
- Thus it is possible in one operation to reduce the overlapping
between year classes.

In the real world the length distribution of a given species is
not known but only a finite sampIe from it. Instead of just
grouping the measurements into some intervals, we propose a dif­
ferent method based on filtering, where we try to eliminate high
frequencyfluctuation in the measured length ditribution that can­
not be told from random variations.

It is shown through a number of examples that these methods are
applicable to real data, (length ditributions for cod, haddock
and shrimp) collected by the Marine Research Institute of Iceland.

These methods are computationally not difficult and can be fully
automated.

INTRODUCTION

It·is weIl known that the size distributions of fish have peaks

due to different year classes, ref (3). These peaks are very pro­

nounced for the younger fish; but as the fish grows older the

overlapping between the year classes increases. This is mainly

due to reduced growth of fish with age but also because of in-

crease in variance in size (length)" ofeach year class.

Methods that take advantage of this fact have long existed for
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Neuer Stempel



2
der1ving information on mean lengths and proportions of different

year classes from size distributions only ( the Petersen's method

ref (3), the de.viation method ref (6),(5».

Since otolithic age determinations bec'ame common, those methods have

decreased in importance and are considered by many to be obsolete

or at best old-fashioned curiosities.

It is the belief of the author of this paper that by the near

extinction ofthese methods in,fishery sciences much has been lost,

especially in that critical graphical'presentation of data has given

way to mean values of lengths and proportions' that pop out of "age-

,

length computer programs". These programs work weIl enough if the as-

sumptions that they are based on hold, which typically they do not,

which can often be seen if one inspects the length distributions.

The methods that we are about to present are not intended to

replace otolithic age-determination but rather to supplement it

to get an immediate idea of what information a given length distri-

bution contains, to increase confidence in calculated values,

and of course if no otolithic age-determinations can be obtain-

ed they can be of aid in determining the mean length and proportion

of a given year class.

THEORY

It is a common assumption that each year class in a length distri­

bution of fish has anormal length distribution and we will assume

that also. We state this formally using an a for the age, using

p(a) for the proportion of fish of age a, u(a) to be its mean and

v(a) the variance.

N
(1) P(x)= Sum p(a)~( (x-u(a»/~v(a) )

a=l

•
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Where'P(x) is the probability density function of the number

of the number of fishes of length x. ~(x) is the normal-

function having the mean zero and variance 1.

The characteristic function for this distribution is easily

obtained by firiding the Fourter-transform of eq.(l) and is

equa1 to: (The Fourier-transform of a noimal function is a

normal function.)

N 2
(2) P(w)= Sum p(a) Exp(-w v(a)/2) Exp( i u(a) w)

a=l

Where w is thefrequency, i is the square-root of -1, and the

bar overP denotes the "Fourier-transform of:".

Equation (2) can also be written as:

(3)
2

P(w) Exp(w v/2)
N 2

= Sum p(a) Exp(w (-(v(a)-v)/2) Exp(iu(a)w) = P (w)
a=l -v

•
,]

What we now have, on the right hand side of the equation, is the

characteristic function of a,length distribution that has year

classes with the same means and proportions as the original

distribution but has reduced variances and thus less overlapping.
I '

The variances are reduced by v, which is some, arbitrary amount
I

but must be less than the smallest variance in the original

distribution.

Using a star "*" to denote a'convolution we have:

N'
(4) 'P(x) = ((J(x/-{V) * Sum p(a) ~( (x-u(a)/f"v(a)-v)

a=l
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Or:

(5) ?(x) = ~(x/fV) * p (x)
-v

To reduce the variances of all the year classes by v, equation

(5) needs to be solved •. ( Equations of,this kind are not

totally unknown to fishery scientists.' The "Craig and

Forbes" equations are of the ~ame kind with the ,target strength

distribution playing the 'role of P and the' "dire~tivity"

:, -v
distribution' playing the role of (Q(x/fV); ref (1). )

It i~ import~nt to note thateven if the year classes are 'not

'normaily , dist~ibuted, there 1s a'gdodthance'that eq.(5) holds

for not too bi~ ,a reductiori'in variance.

Each year cl~ss does not n~ed to be normally distributed but only

to consist of a.distribution that may be obtained through a con­

volution of a, normal-distribution with another distribution.

For, instanceit is likely that the ~rror resultingfrom inaccu­

rate measurement of each fish.contributes to such a convolution.

To solve,equation (5) it would be best to use allavailable in­

formation such as the known fact 'that P (x) can not be negative
-v

and all the available inf9rmation on the growth of the fish

species at hand shouldideally be used.

Nevertheless we will here only solve (5) using straight-forward

and fast methods.

It is obvious that it would be simple to calculate the numerical

Fourier-transform of a measured length distribution to obtain

the characteristic function of the distribution and then to
2

divide that function by Exp(-wv/2). The inverse Fourier-transform

•
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. should then yield the same distribution with reduced variances.

I ~h:a ~~ r.nt~lly anloqous to the way the C~aig' and Forbes

equations are usually solved, even ifthe deconvolution

is usually done in the "time-pomain")

The problem with this is that we don't know the exact length

distribution, but only a sample from it, and the usual method of

grouping the fishes into intervals results in a distribution.'

that is certainly not composed of'~ sum of normal dist~ibutions

only. (Because of inaccuracies).

The valu~ of the length-distribution in each interval is only

knowi with limited accuracy •

'.. How to handle this inaccuary' is the biggest problem in solving eq.

(5),'the method that we have chosen will be discussed in the

next chap~er,.

The Practical Algorithm

The measured length distribution may be thought of as beeing ~om­

posed of two dist~ibutions, one is the correct length distribution
"

(divided into 'intervals) and the other is an error function ,and

if we tried to deconvolute the measured length distribution using
, .

tt the above described method" this errorfunction would dominate the

output.

To increase accuracy in each interval the usual method among

fishery scientists is to makethem wider and fewer, but since

this has the effectof increasing the variances of each year

class, (which is opposite to what we want), we don't do that.

Also, this may introduce what is known in digital signal

processing text-books as "aliasing".

If the square-root is taken of the measured length distribution,

then it is a good approximation ( if the number of fishes in the

interval are 10 or more) to assume th~t the error in each interval

5

is constant with std.dey. of size 1/2. After taking the square-root

we are left with two functions added together, one is the square-
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root of· the length distribution and the other is an uncorrelated

error function, containing no information on the size distribution.

We will try to remove as muchof this error function as possible

without harming the square-root of the length-distribution. We do

this by calculating the Fourier-transform. The error function has

equal chances of having·power in all fr~quencies and we can calcu­

late the probable sizes of this power, using the fact that the

sum of squares for E(x) and E(w) is 'proportional, where E is the

error function, ( the Parseval theorem).

Then we put the power of all frequencies to zero if it is not

appreciably higher. than what could be expected from the error

function. The square-root of the length distribution is a •
low frequency function with its power rapidly diminishing with

higher frequencies and the error function has equal power at

all frequencies. So what we really do, is to low-pass filter

the data. We only have to find the frequency for which the

power in all higher frequencies could have originated by chance,

and set this power equa~ to zero.

After the measured square-root of the measured length distributi­

on has been cleaned in this way it is squared to obtain a smoothed

approximation to the real length distribution~ This function could •

then be Fourier-transformed and deconvoluted with anormal distributi-

on having a variance v, to reduce the overlapping between year-

classes.

All our-numerical problems are not solved by the above described
1_:) :

smoothing algorithm. Numerical error will seep in again when the

the function is squared and the Fourier transform is taken, so in­
2

stead of dividing the Fourier transform with Exp(-v w /2 ) we add a
2 2

small constant and divide with Exp(-v w /2)+Exp(-v m /2) ·where m is

the highest frequency that was let through when we smoothed our data.

Frequencies above m are not worth much, and this will make sure

that they are not excessively amplified. This constant has usually a

very low value and will change little but for the frequencies above
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m. ( When the function is squared, power is invoked again in

frequencies be~ween m and 2m, this does not add real resolution

however ).

This last filtering may seem to be too arbitrary to many, a method

that would seem more justifiable would be to put all power above 2m

to zero, since theoritically there should be none. But experiroent­

ally this approach has not yielded as nice outputs as has this one.

In our programs there is an option on which approach to use.

If v is weIl beneath the largest variance in the distribution there

is little difference in these two approaches •

This algorithm may seem complicated , which is because the problem of

getting rid of the error is cornplicated. Really this is a very simple

approach, we ernploy it because it is non-iterative, numerically

easy and seerns to give acceptable results. It is best demonstrated

through exarnples which will be given in the next chapter.

(We have tried to avoid messing up this paper by mentioning nurnber

of things that could improve this algorithm, such as using "win­

dowing", and using iterative processes.)

We sum up the method as foliows:

1 Group the fishes into length interva1s, preferably not

too wide (see 4) and so that at least 10 fishes are in each

interval on the average.

2 Take the square-root of. the resulting distribution.

3 Calcu1ate the Fourier-transform of the distribution in 2.

4 Find the frequency, ro, above which all power in the Fourier

transform cou1d have resulted from the inaccuracy in the
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measured: length distribution, and put all power above it to

zero. ( If the intervals hay~ been choosen too wide this fre-

quency cannot be faund and aliasing has been introduced ).

We have done this visually, an automatie method has not yet

been implemented into the programs.

5 Calculate the inverse Fourier-transform.

6 Square it. (The resulting distribution is our smoothed version

of the length distribution).

7 Calculate the Fourier-transform. •2 2
8 Divide it with Exp(-w v/2)+Exp(-m v/2), where v is the reduc-

tion in the variances of all the year classes that is sought for.

9 Calculate the inverse Fourier transform. What we now have is

the distribution with reduced variances.

As can be seen there are a number of Fourier-transform caIculations.

These are straight-forward to do, using some of the Fast-Fourier-

transform algorithms in the litterature, but since we prefer to

use Basic as a programming Ianguage"and very few good FFTs exist

for that Ianguge, we have written our own FFT that optimizes the

number of additions as weIl as muItipIications and is therefore

especially fast running interpreter BASIC. There should be no

machine on which the above algorithm would run too slowIy. A 64-
qq i+:l..O .

point FFT costs only~ real multiplications and~ real addi-

tions). A Iisting of our computer program is given in the

appendices at the end of this paper.

•
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EXAMPLES AND DEMONSTRATIONS

To demonstrate and test the above a1gorithm we beg in by simu1ating

Q 1ength distribution that cou1d have been obtained for shrimp

growing up at Ice1and's North-West coast (in march). We use the fo1-

lowing parameters. ( tab1e 1) ( Va1ues chosen by Unnur Sku1a~ottir)

Tab1e 1

Year
c1ass

1

2

3

4

5+

Mean­
1ength (mm)

11.6

15.3

18.4

21.0

22.6

Standard­
deviation

.9

1.0

1.05

1.1

1.1

Proportions

21

34

25

15

5

• This distribution is drawn in figure 1.

We choose to sampIe 1500 shrimps random1y out of this distribution

and to group them in half-millimeter groups. ( This is common

practice at our institute).

The samp1ed distribution is shown in fig.2.

The square-root of it is shown in fig.3. This function is compos-

ed of the square-root of the 1ength distribution plus som random

error that is very near1y uncorre1ated and not a function of the

1ength distribution. The error has a standard devitation equa1 to

1/2 in each interval.

The size of the Fourier-transform of the function in fig.3 is



10

shown in fig.4. This is the Fourier-transform (DFT) of the square-

root of the length distribution which is a low-frequency function

plus the Fourier-transform of the error function. The error function

is equally like1y to have power in all frequencies, so all the

power in higher frequencies belongs to the errorfunction.

We have drawn on the figure a line representing the mean value of

the power of the error frequncies. (This value is calculated

before-hand using the Parseval theorem).

It is obvious that all power above 11 could be accounted for by

the error function and therefore· contains no information on the

length distribution, this power is therefore put to zero and

the inverse Fourier trans form is calculated and displayed in

figure 5. As can be seen there are negative values iri fig.5

which we put to o.

The function in figure 5 is squared and the result is shown in

fig.6. This is then, the smoothed version of our sampled distri-

bution. Note the similarity with fig. 1. Even if fig.l and fig.6

seem alike there is much more resolution in fig.l and there may

not be enough resolution left in fig 4~ to distinguish between all

the year classes. (The resolution is reduced by 12/32 since only

the 12 lowest frequencies were kept when smoothing and a 64 point

DFT was used, which gives 32 useful frequencies.)

Next the Fourier transform is taken of the distribution in fig 6.
2

It is divided by Exp(-v w /2) and the inverse transform taken (v

is here set to 0.81, to reduce the variances by 0.81). The result

is shown in fig. 7. And it is seen that the first four year clas­

ses stand out clearly with the correct mean lengths, but the fifth

year class can barely be imagined. This is a great improvement

over fig.2 from which it is derived.

In appendix B we do this twice again using the same data as in

table 1. but using other randorn sarnples from-the distribution, to

show that fig. 7 is no coincidence.

•



11. Welll now demonstrate using real sampIes from shrimps caught in

nIsafjardatdjupn, the. Marine Research Institute has collected from

this fjord in North-Western Iceland a.large amount o~ data on a

month to month basis for the last 10 years. Fi9ure 8 shows us the

length distribution of 5084 shrimps caught in February 1984, they

are grouped in .5 mm intervals. The first peak belongs to the 19­

82 year class. (We do not displaya few shrimps belonging to the

to the 1983 year class).

The size of the Fourier transform of the square-root is displayed

in fig. 9. It is seen that only.the 14 lowest frequencies have

power that is appreciably ~igher than the error.

4t Figure 10 is the smoothed distribution deconvoluted so ~~ to lessen
2

the variances by .7 mm. It is seen ·that four peaks stand out and

we have marked them with the name of the year classes that we belief

they belong to. It is also seen that there is a false peak just

before the 1982 year class, which is because this year class has a
2

variance that is close to .7mm.

Real confidence in what we see in such distributions is only obtain­

able by looking at aseries of the distributions in time. In doing this

•
the human eye outperforms any computer program in detecting trends

and patterns. So ·letls look at the distributions a month earlier'and

one year earlier.

Figure 11 is the distribution of 1705 shrimps from this same fjord

in January 84, and fig;12 is what it looks like after our analysis.

Figure 13 is the distribution of 6844 shrimps'fram the previous year

February 1983, and fig 14 is what it looks like after similar ana­

lysis.

In general one can expect more resolution when the number of shrimps

is increased.' But often greater number is obtained by lenghtening

the sampIe period and increasing the sea area, which then contri­

butes to increased ov~rlapping between year classes. ( The shrimps

grow while one is sampling and there may be added other growth stocks
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of shrimps by increasing the area.)

Shrimps are an important example to look at since there is no other

known way for age determination of them other than analysis of their

size distribution. We will now look at commercially a more important

species.

Fig 15,17,19,21 and 23 are length distributions of cod collected by

the Marine Res. Institute of Icel. off the North and East coast of

Ieeland ref (2). Figures 16,18,20,22 and'24 show those same length­

distributions when they have been nonlinearly filtered (10-14 lowest

frequencies were kept, we used 128-point diser. Four. tr.), and decon­

voluted using v~lO. More deconvolution would have caused false peaks

when the first year-classes which have the least variations in lengths

had split up. We·have not done anything to the youngest year classes

if those were already non-overlapping with the rest of the length-

distribution.

The question arises whether one can have any faith in peaks that

stand out after mathematical manipulations like these. The answer is

no. Only if there is a basis for a peak in the original distribution,

will a peak in the deduced distribution be worth anything. It is our

belief that the eye is a very clever signal processor and it should be

used together with common senseto inspect the original distribution ..

to verify whatever has been deduced.,

We have marked all the year classes with their age, we would not have

been able to do this but for the first three years with any confidence,

had we not had age-determinations from otoliths for comparision.

There are many interesting features in these length distributions,
-"~ '

such as that the three year old cod gets smaller between February

and May (this was also seen in the otoliths) and that almost all its

growth is in May to August, and an especially good growth too, the

first and second year grows more evenly. It is interesting to see

how the proportions of year classes varies but this is not to be

the sUbject of this paper. We will nevertheless add, that in other
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years the young cods seem to behave differently.

What we want to emphasize is that one can get somewhat a feel of

seeing what is happening by inspection of the length distributions

and even if this often confronts one with puzzles there is a false

security in just getting one figure for the proportion'of a year

class caught in one year and its mean length.

We end these demonstrations by displaying two'length distributions

for haddock. Fig. 25 shows the length distribution of 3408 haddocks

caught off the North-Western coast of Iceland between 23. of February

and 8. of March 1984. Fig. 26 shows what this distribution looks
2

1ike after our analysis, (variances have been reduced by 6 cm,

the first year c1ass was 1eft untouched and on1y the 16 lowest frequ­

encys had power appreciab1y higher than the error'). We have marked

the peaks with their appropriate age, those were compared to oto1ithic

age determination and found to be resonable.

Fig. 27 shows the distribution of 2229 haddocks caught in the same

survey off the eastern coast of Ice1and only half a month 1ater.

Fig. 28 shows this distribution after similar analysis, and again we

have marked the peaks'with their appropriate year c1ass. Oto1iths were

also collected for these haddocks and the peaks correspond nicely to

the mean lengths of the year classes. It is striking how dissimilar

the mean 1engths are for those two areas, and it is,clear that great

ca re has to be taken when putting together age-1ength keys for use on

cornrnercia1ly caught haddock from the otoliths co1lected in this sur-

vey.

CONCLUSIONS

We' have pointed 'out that it should be possible to decrease overlapping

between year c1asses in fish-1ength distributions by deconvo1uting them

with anormal function. We have'also stated that there a~~ practical

numerica1 problems in doing so, and we have demonstrated a simple ap-
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proach for solving those. This problem of forming a practical method

for deconvoluting functions given restrictions, such'as that the out­

put should be positive and given the properties of the error, are weIl

known in other sciences. Because of our incomplete knowledege of this

field we are nevertheless not able to give any references to good

appropriate methods, but we must say that attempts have been made to

solve equations of the same kind as eq. (5), using far more sophisti­

cated methods than what we have used.

As a first attempt of bringing signal processing into fishery

sciences, the results in.this paper seem to be promising.
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The square-root of the sampled distribution.
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Fig.5
The inverse tranform of fig.4 (High freq.power set to 0)
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,. Fig.17
4268 cods in May 1976
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Fig.21
5524 cods in March 1977
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Fig.23
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Fig.25
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Ieeland.
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Fig.27
2229 haddoc~ east offIceland.
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Fig.26
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Appendix A

10 DIM D(128),S(16),S1(16),S2(16)
20PRINT· An interactive prosram for smoothins and sharpenins·
30 PRINT" size distributions"
40 PRINT" Copyrisht 94 Marine. Research Institute of Iceland" \ PRINT
50 PRINT "Enter a number that i5 apower of two and is larser·
60 PRINT ethan the number of entries in the fish-distribution"
70 INPUT N
80 02=1/S0R(2)
90 GOSUB 1450 \ REM Calculate the multiplercoefficients
100 PRINT • MENU· \ PRINT '
110 PRINT • 0 DISPLAY MENU·
120 IF 18=0 THEN PRINT " 1 INPUT DATA"
130 IF 18=0 THEN PRINT • 2 SOUARE-ROOT"

~140 IF 18=0 THEN PRINT • 3 FAST FOURIER TRANSFORM"
~50 IF 18=1 THEN PRINT " 4 PUT HIGH FREOUENCY POWER TO NULL"

160 IF 18=1 THEN PRINT - 5 INVERSE FFT-
170 IF 18=0 THEN PRINT - 6 PUT NEGATIVE VALUES TO NULL-
180 IF 18=0 THEN PRINT - 7 SOUARE DATA·
190 PRINT • 8 DISPLAY DATA-
200 IF 18=1 THEN PRINT - 9 DIVIDE EXP(-wwv)+EXP(-wwm)-
210 IF 18=1 THEN PRINT - 10 DIVIDE EXP(-wwv)-
220 PRINT • 11 OUTPUT DATA-
230 PRINT • 12 STOP· \ PRINT
240 PRINT"ENTER OPTION NUMBER- \ INPUT C \C=C+1
250 ON C GOSUB 100,280,430,850,450,770,510,530,1510,550,620,690,720,3000
260 PRINT "DONE a
270 GO TO 240
280 PRINT "Enter name of raw data file·
290 INPUT A$ \ OPEN A$ FOR INPUT AS FILE ti
300 PRINT ·How many entries arethere in that file- \ INPUT-N3 .
310 PRINT "What is the width of each interval- \ INPUT B .
320 T5=0 \ 18=0

"~30 FOR 1=0 TO N3-1 \ INPUT tl,D(I) \ T5=TS+D(I)
W340 PRINT D(!),I*B \ NEXT !

350 PRINT aFirst non-zero interval a ; \ INPUT MS
360 FOR !=O TO M5/B-1 \ D(I)=O \ NEXT I
370 PRINT alast non-zero interval·; \ -INPUT M6 \ E=SOR«M6-M5)/B)/2
380FOR I=M6/B+1 TO N-1 \ D(!)=O \ NEXT I
390 PRINT aNumber of measured fishes;-,TS'
400 ClOSE t1
410 FOR I=N3 TO N-1 \ D(I)=O \ NEXT I
420 RETURN
430 FOR 1=0 TO N-1 \ D(I)=SOR(D(I» \ NEXT 1
440 RETURN
450 PRINT • IF SOR HAS BEEN TAKEN THE STD.DEV OF THE NOISE IS '-;
451 PRINT.E
452 PRINT • OTHERWISE IT IS EOUAL TO THE SOR OF THE NUMBER OF FISHES-;
453 PRINT SQR(T5) \ PRINT
454 PRINT a U8E THIS INFORMATION TO DETERMINE WHEN IT'CAN NO lONGER­
455 PRINT a BE ASSUMED THAT THE POWER BELONGS TO THE ERROR FUNCTION­
456 PRINT • -- NOTE THAT IF THE SQUARE-ROOT HAS BEEN TAKEN, AND IF· .
457 PRINT a THE NUMBER OF NON-ZERO INTERVAl8 18 K, AND AN-POINT FFT -
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458
459
460
461
462
470
480
490
500
:'.510
::.';12
516
520
:530
540
5~jO

560
570
~:;80

590
600
610
620
630
640
650
660
68()
690
700
710
'720
730
740
750
760
770
780
'790
800
810
820
830
840
850
860
1370
880
890
900
910
920
930

..

PRINT • HAS BEEN TAKEN THEN EVERY K/N VALUE IS UNCORRELATED. 1

PRINT 1 THE REST MAY BE THOUGHT OF AS BEEING INTERPOLATED. 1

PRINT • BEWARE OF DIGIT PREFERENCES 'I \ PRINT
PRINT 'REAl PART','IMAG','FREQ' .
FOR I=N/2 TO 0 STEP -1 \ PRINT DCI),DCN-I),I \ NEXT I
PRINT 'WHAT IS THE HIGHEST FREQUENCy'THAT YOU WANT TO USE '
INPUT M6
FOR I=M6+1 TO N/2 \ DCI)=O \ DCN-I)=O \ NEXT I
RETURN
FOR 1:=0 TO N-l
IF D(I)<O THEN D(I)=O
NEXT I
RETURN
FOR 1=0 TO N-1 \ D(I)=D(I)-2 \ NEXT I
RETURN .
PRINT 'DECREASE IN VARIANCE ' \ INPUT V
S=SQR(V)/B \ 0=EXP(-2*(S*PI*M6/N)-2)
FOR 1=0 TO N/2-1 \ X=EXP(-2*CS*PI*I/N)-2)
D(N-I)=D(N-I)/(X+O) \ DCI)=DCI)/(X+O)
NEXT I
X=EXP(-2*(S*PI/2)-2) \ D(N/2)=D(N/2)/(X+0)
F~ETURN

PRINT HDECREASE IN VARIANCE ' \ INPUT V' .
s=scm( V) /B
FOR 1=0 TO 2*M6 \ X=EXP(-2*(S*PI*I/N)-2)
D(N-I)=D(N-I)/X \ D(I)=D(I)/X
NEXT r
RETURN
PRINT HENTER A FIlENAME ' \ INPUT At \ OPEN At FOR OUTPUT AS FILE *1
FOR 1=0 TO N-l \ PRINT 41,D(I) \ NEXT I \ ClOSE 41
RETURN
STOP
REM This program calculates the inverse transform of real seauence.
REM The real part is stored in D(i). The imaginar~ part in D(N-i), ..
REM the same vecto.(Onl~ half of them need to be stored). On output~

REM the real seauenceis in this same vector.
FOR 1=1 TO N/2-1 \ X=D(I) \ Y=DCN-I) \ DCI)=X-Y \ D(N-I)=X+Y \ NEXT I
GOSUB 850
FOR 1=1 TO N/2-1 \ X=D(I)/N \ Y=D(N-I)/N \ D(I)=X-Y \ D(N-I)=X+Y \ NEXT 1
DCN/2)=D(N/2)/N \ D(O)=D(O)/N
RETURN
REM This is a FFT the input seauence ( must be real), is stored
REM in D( i), .on output the real part is in D( i) and the imago
REM in D(N-i). Onl~ half of each needs to be stored.
GOSUB 1340
18=1-18 \ L=O
IF N=4 THEN 1220
N=N/2
GOSUB 870
l::::L+N
GOSUB 1000
J=l+N \ K=L \ l=L~N

Y=D(K) \ X=D(L) \ D(K)=X-Y \ D(L)=X+Y
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940 FOR 1=1 TO N/2-1
950 X=D(LtI) \ Y=DCK-I) \ Z=DCKtI) \ W=DCJ-I)
960 D(K-I)=X-Z \ DCLtI)=XtZ \ DCKtI)=W-Y \ DCJ-I)=YtW
970 NEXT I
980 N=N*2
990 RETURN
1000 IF N=4 THEN 1290
1010 N=N/2
1020 GOSUB 870
1030 L=LtN
1040 FOR 1=0 TO N/2-1
1050 K=LtN-I-l \ X=D(LtI) \ D(LtI)=D(K) \ D(K)=X
1060 NEXT I
1070 GOSUB 870

__.080 Ll=LtN \ K=L \ Kl=L \ N2=N/2 \ L=L-N
1090 X=D(L) \ Y=D(K) \ Z=D(LtN2) \ W=D(KtN2)
1100 D(L)=XtY \ D(LtN2)=(ZtW)*G2 \ DCK)=X-Y \ DCKtN2)=(Z-W)*G2
1110 M=N4/N \ H=M '
1120 FOR I=Ltl TO LtN2-1
1130 S=S(H) \ Sl=Sl(H) \ S2=S2<H) \ H=HtM \ K=Ktl \ Kl=K1-1 \ L1=L1-1
1140 R1=D(I)tD(K) \' R2=D(K1)-D<L1) \ C1=D(I)-D(K) \ C2=D<K1>tD(L1)
1150 G1=(R1-C2>*S \ G2=(Cl-R2)*S \ Fl=R1*S2 \ F2=C1*S2 \ H1=C2*Sl \ H2=R2*Sl
1160 D(K1)=GltH1 \ D(I)=GltFl \ D(K)=G2tF2 \ D(Ll)=G2tH2
1170 NEXT r
lHJO N=N*2
1190 F~ETURN

1:WO REM
1210 REM This is a routine that calculatesthe transform of 4-points
1220 Ll=Ltl \ L2=Lt2 \ L3=Lt3
1230 R=D(L>+D(L1> \ D(L1)=D<L)-D(L1)
1240 R2=D(L2)tD(L3) \ D(L3)=D(L2)-D(L3)
1250 D(L)=RtR2 \ D(L2)=R-R2
1260 RETURN

_270 REM
1280 REM This rouitine calculates the FFT of 4-point odd-seauence
1290 L1=Ltl \ L2=Lt2 \ L3=Lt3
1300 R=D(L) \ X=RtD(L1) \ Y=R-D<L1)
1310 R=D(L2) \ Z=RtD(L3) \ W=D(L3)-R
1320 D(L)=XtZ \ D(Ll)=(YtW)*G2 \ D(L2)=X-Z \ D(L3)=(Y-W)*G2
1330 RETURN .
1340 REM This is a bitreyersin~ subroutine.
1350 Ll=O
1360 FOR 1=1 TO N-l
1370 N2=N
1380 N2=N2/2
1390 IF LltN2)=N THEN 1380
1400 Ll=Ll-INT(Ll/N2>*N2tN2
1410 IF Ll(=I THEN 1430
1420 R=D(I) \ D(!)=D(Ll> \ D(L1)=R
1430 NEXT I
:L440 RETURN
1450 REM This routine calculates the multipliercoerricients
1460 N4=N/4
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1470 R=2*PI/N
1480 FOR 1=1 TO N/8 , C=COS(I*R) , S=SIN(I*R)
1490 S(I)=S , Sl(I)=C+S , S2(I)=C-S , NEXT I
1500 RETURN
:l510 X=O , Y=O
1520 FOR 1=0 TO N-1
1530 IF X<D(I) THEN X=D(I) , IF Y>D(I) THEN Y=D(I)
1540 NEXT I·
1550 FOR 1=0 TO N-1
1560 FOR J=Y/(X-Y) TO D(I)*60/(X-Y) , PRINT ·X·; , NEXT J
1570 PRINT I*B
1580 NEXT I
1590 RETURN
3000 S=O'FOR 1=0 TO N-1'S=S+D(I)~2'NEXT I
3010 PRINT S*2-D(0)-D(N/2)
3030 RETURN
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Appendix B

Two simulations more)using the values in table 1

S 10 16"

A sampled
o

o S ,a I~ 2(j 25 30 mrYl

After the deconvolution

l

I

o IS' ~Q "Z$"" ao
Another 1500 lengtm sampIe

o S" 10 IS" 20 2.'S' ~D

After the deconvolution


