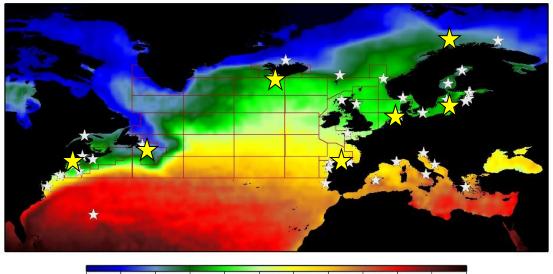
Name that Species

The Need for Reference DNA Barcode Databases for Analysis of Zooplankton Diversity using Barcoding and Metabarcoding

Ann Bucklin Department of Marine Sciences University of Connecticut

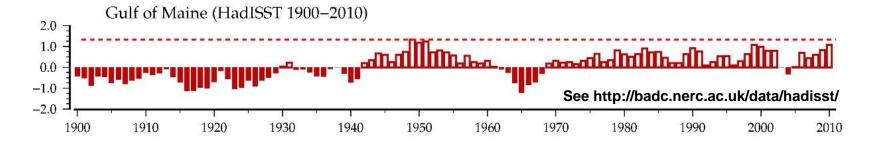
ICES/PICES 6th Zooplankton Production Symposium Workshop 7. Toward a taxonomically-comprehensive global reference database for DNA barcodes of marine zooplankton. May 11, 2016 – Bergen, Norway


Photo credits: R.R. Hopcroft and Cheryl Clarke (Univ. Alaska – Fairbanks)

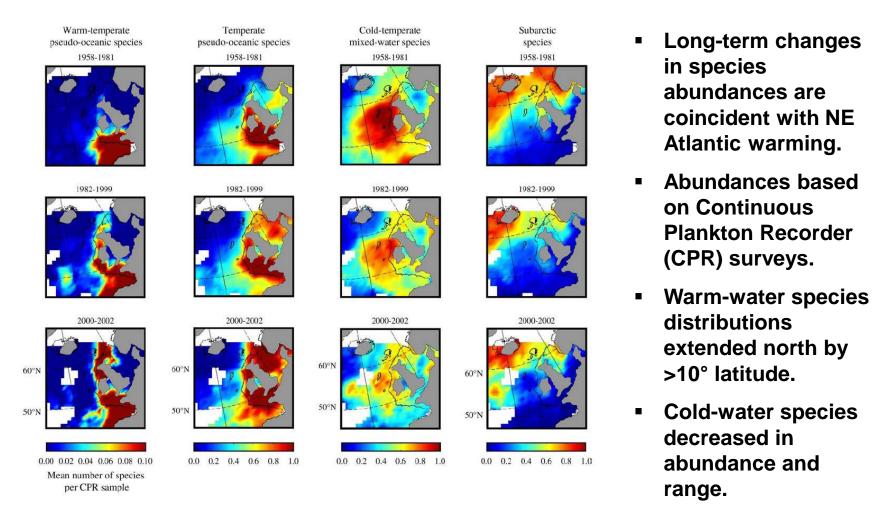
Outline of Presentation

- Importance of analyzing species-level diversity
- Integrative taxonomy
- DNA barcoding: COI and other barcode genes
- Metabarcoding: promise and pitfalls
- Call to action: Need for reference sequence databases

Why Analyze Species-level Diversity: Species are Better Indicators

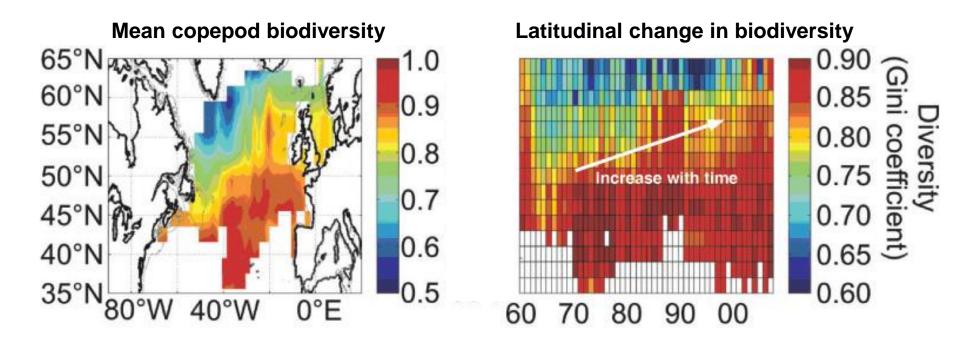

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 Sea Surface Temperature (C)

40 zooplankton monitoring sites (white stars) and 7 Continuous Plankton Recorder standard areas.

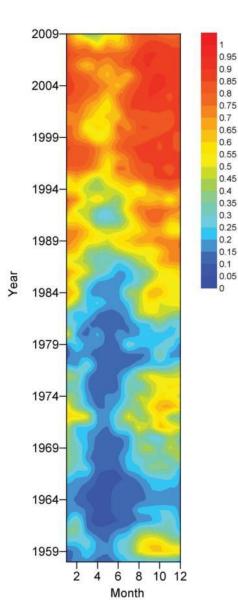

From: O'Brien, Wiebe, and Falkenhaug (2013) ICES Zooplankton Status Report

- Species provide more information to evaluate nature of changes and biological / environmental mechanisms responsible.
- Changes in species abundance / biomass, phenology show larger changes than biomass.

Mackas and Beaugrand (2010) J. Marine Systems 79: 286–304

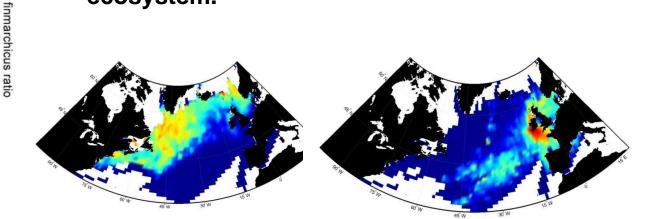

Why Analyze Species-level Diversity: Species-Specific Impacts of Warming

Beaugrand (2005) ICES J Marine Science 62: 333-338


Why Analyze Species-level Diversity: Species-Specific Impacts of Warming

Multi-decadal northward shift in copepod biodiversity coincide with increased SST at high latitudes.

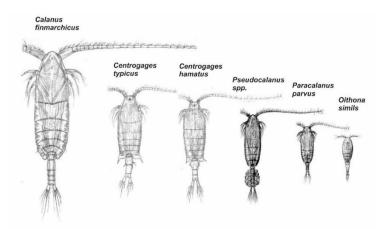
Beaugrand et al. (2010) PNAS 107: 10120–10124


Why Analyze Species-level Diversity: Species-Specific Impacts of Warming

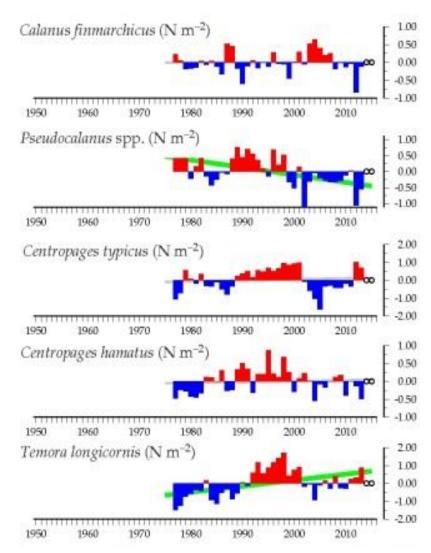
Calanus helgolandicus

Calanus

- Dramatic shift in ratio of two Calanus species in North Sea: C. helgolandicus increases, C. finmarchicus decreases.
- Differences in species life history timing and role in food web impact whole ecosystem.



Mean spatial average for the last 50 years: Calanus finmarchicus (left) and C. helgolandicus (right)

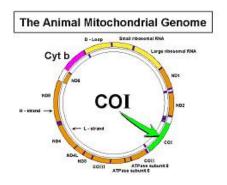

From: SAHFOS Marine Ecological Status Report 2010

Why Analyze Species-level Diversity: Species-Specific Responses to Large-Scale Forcing

Dominant copepods on Georges Bank show species-specific patterns of decadal variability associated with Arctic Ocean Oscillation (AOO).

O'Brien, Wiebe, and Falkenhaug (2013)

Contributions of Integrative Taxonomy to Biodiversity Science

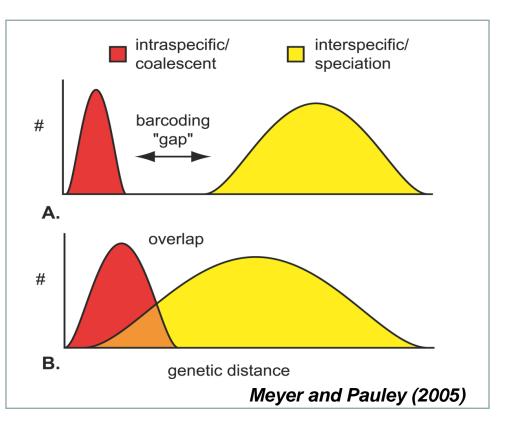


Integrative taxonomy: science that aims to delimit biodiversity from multiple and complementary perspectives: phylogeography, morphology, population genetics, ecology, development, behavior, etc. -- Dayrat (2005) Biol J Linnean Soc

Applications of integrative taxonomy:

- 1) Biodiversity assessments of marine communities.
- 2) Detection and identification of invasive non-indigenous species.
- 3) Trophic relationships and food web structure.

DNA Barcoding: COI



Barcodes are short DNA sequences that enable species recognition and discrimination.

For animals, usual barcode is 658 basepair fragment of mitochondrial cytochrome oxidase I (COI).

- Most invertebrate zooplankton groups show nonoverlapping distances withinversus betweenspecies.
- The "barcode gap" allows species identification

Integrative Taxonomy in Practice

- Collection, identification, photography, DNA extraction, DNA sequencing.
- Carried out onboard the R/V RH BROWN in the Sargasso Sea (2006)

Mollicia tyloda

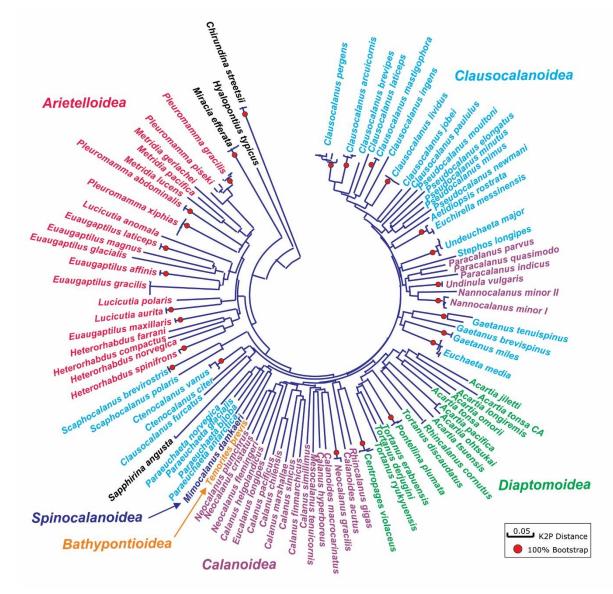
Sapphirina metallina

Applications of COI Barcodes

Species identification: 'Gold standard' barcodes based on specimen identified by taxonomic expert, georeferenced, archived vouchers.

Discrimination of cryptic species: Barcodes can reveal cryptic, rare and unexpected species within known taxa.

Phylogeography: Barcodes used to describe geographic distribution of genetic lineages; large-scale population genetic structure, connectivity, and migration.

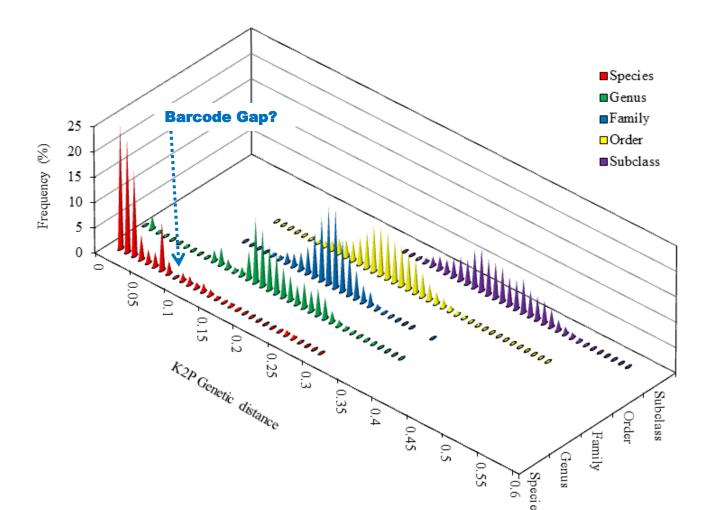

Phylogeny: Barcodes contribute to multi-gene phylogenetic analysis.

Diversity: Species diversity decoded by linking species names, morphology, and DNA sequence variation in reference database.

Barcoding Marine Copepods

- COI barcodes resolve species with high bootstrap support 100% (●)
- COI does not reliably resolve relationships among species, genera, or families.

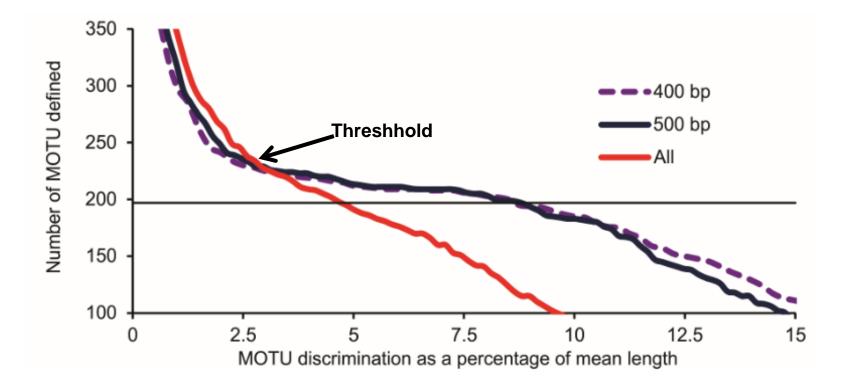
 Accurate and reliable – and eventually automated – species identification requires match to reference sequence in database.



Neighbor Joining tree, K2P distances, 1000X bootstrap; 146 COI barcodes; 100 species. Blanco-Bercial et al. (2014)

Barcoding Marine Copepods

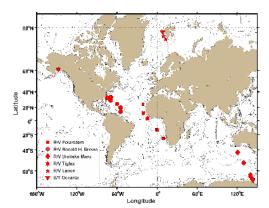
Blanco-Bercial, Cornils, Copley, and Bucklin (2014) PLOS Currents - Tree of Life


- Total of 1,381 sequences for 195 copepod species
- Kimura-2-Paramater (K2P) distances between > within species (p<0.001)
- Some overlap within / between species due to geographic variation, cryptic species; no clear barcode gap.

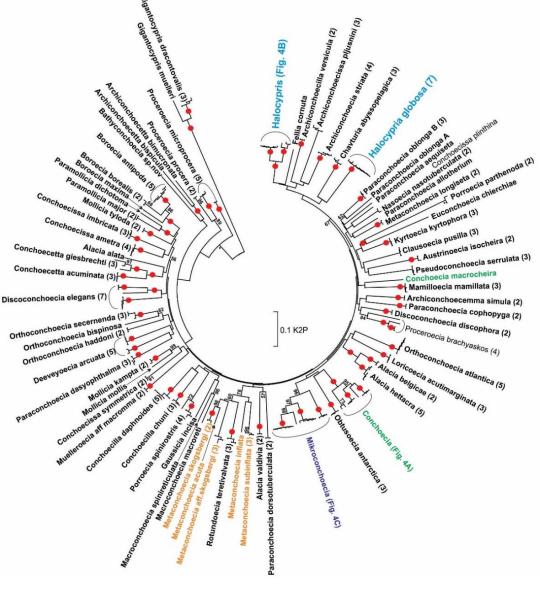
Barcoding Marine Copepods

Blanco-Bercial, Cornils, Copley, and Bucklin (2014) PLOS Currents - Tree of Life

Discrepancies between MOTUs (~220 at threshholds) and OTUs (195 at line) due to geographic variation, cryptic species, etc

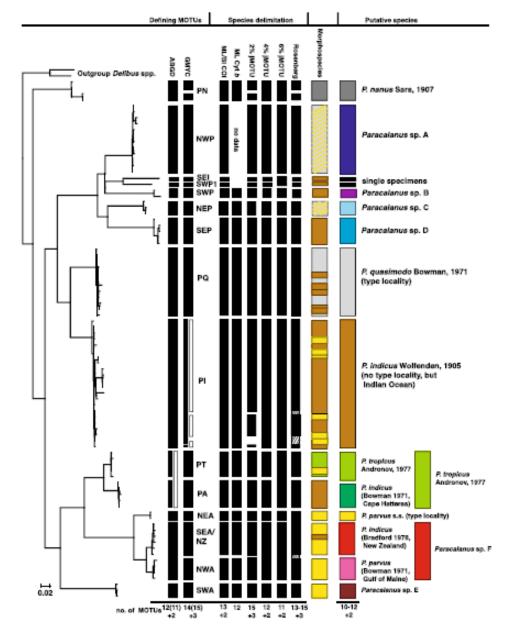

Data analysis: 1,381 barcodes for 195 species. Number of MOTUs inferred in jMOTU based on thresholds for species-recognition (% of mean barcode length) based on 3 alignments.

Barcoding Marine Ostracods


Nigro, Angel, Blachowiak-Samolyk, Hopcroft and Bucklin (2016) PLOS-One

Barcodes for: - 210 specimens - 79 species

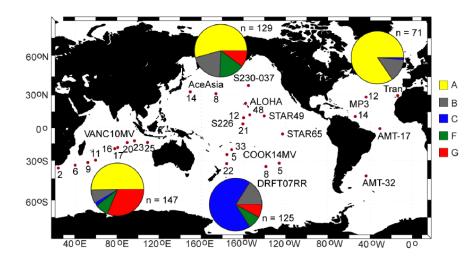
Specimens collected from Atlantic, Indian, Southern Oceans; Greenland Sea, Gulf of Alaska.

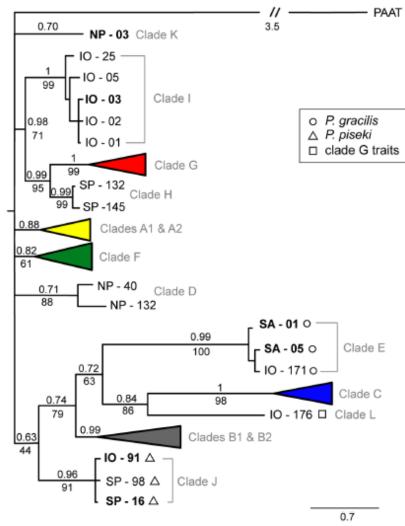


Neighbor Joining tree, K2P distances, 1000X bootstrap

Cryptic Speciation in *Paracalanus parvus* (Copepoda)

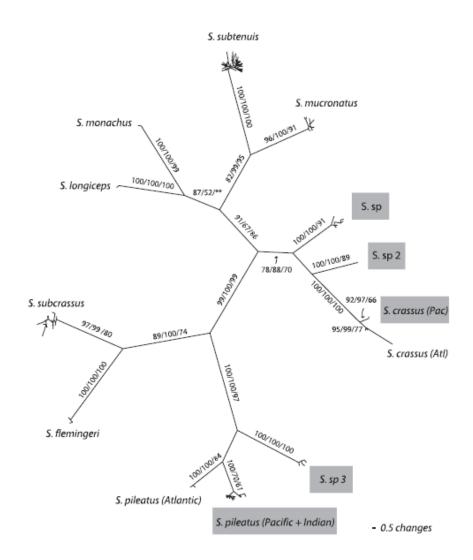
Cornils and Held (2014) Frontiers in Zoology

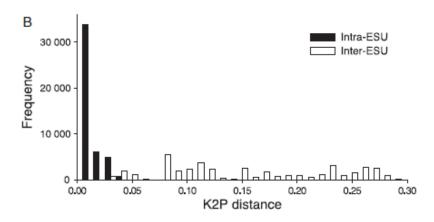

- COI and Cytochrome b sequences analyzed for 160 specimens of copepod Paracalanus parvus complex from all oceans
- COI is good indicator of specimen identification in *Paracalanus*.
- Species delimitation methods were largely congruent,
- Evidence of cryptic or pseudocryptic speciation, with 10-12 putative species.



Cryptic Speciation within Pleuromamma (Copepoda)

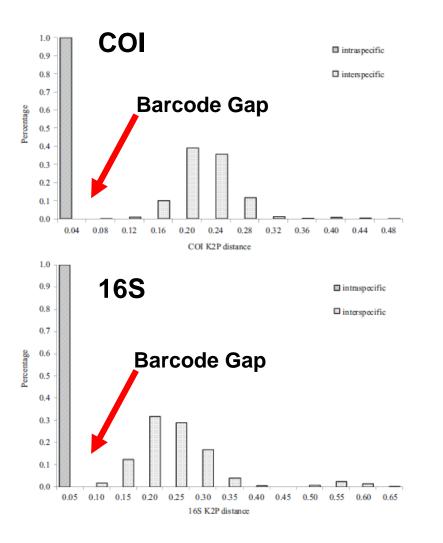
Halbert, Goetze, Carlon (2013) PLOS-One 8: e77011


- Analysis of *Pleuromamma* species complex in Atlantic, Pacific and Indian Oceans.
- Cytochrome Oxidase II barcode gene
- Cryptic clades within morphologically described species



Cryptic Diversity of Eucalanid Copepods - 16S rRNA

Goetze (2010) Molecular Ecology 19: 952–967



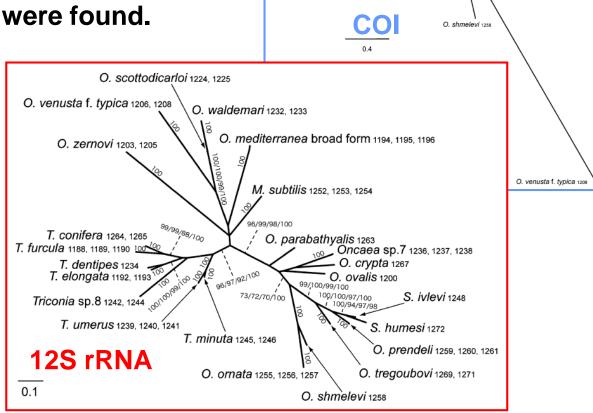
- Global sampling of 1,295 individuals of 22 described species.
- 16S rRNA showed barcode gap within and between evolutionarily significant units (ESUs).
- Relatively high phylogenetic signal at species and generic levels in the Eucalanidae

DNA Barcoding of Hydrozoa: COI versus 16S

Zheng, He, Lin, Cao and Zhang (2014) Acta Oceanol. Sin. 33: 55–76

- Clear barcode gap for both COI and 16S
- Strong recommendation for 16S as barcode gene for Hydrozoa.
- Advantages of 16S:

1) Better resolution of genera and sometimes families.


2) More 16S sequences: 1,566 16S sequences (596 species) versus 621 COI sequences (169 species)

3) 16S more easily amplified and sequenced across hydrozoan taxa (Moura et al., 2011).

Species Identification of Onceaidae (Copepoda)

Boettger-Schnack and Machida (2011) Hydrobiologia 666: 111–125

- Integrative taxonomy of Oncaeidae in Mediterranean Sea.
- All morphospecies investigated were genetically distinct and no cryptic species were found.
- 12S rRNA better barcode gene for oncaeid copepods

O. scottodicarloi 1224, 122

O. waldemari 1232, 1233

O. mediterranea 1228

T. minuta 1245, 1248, 124

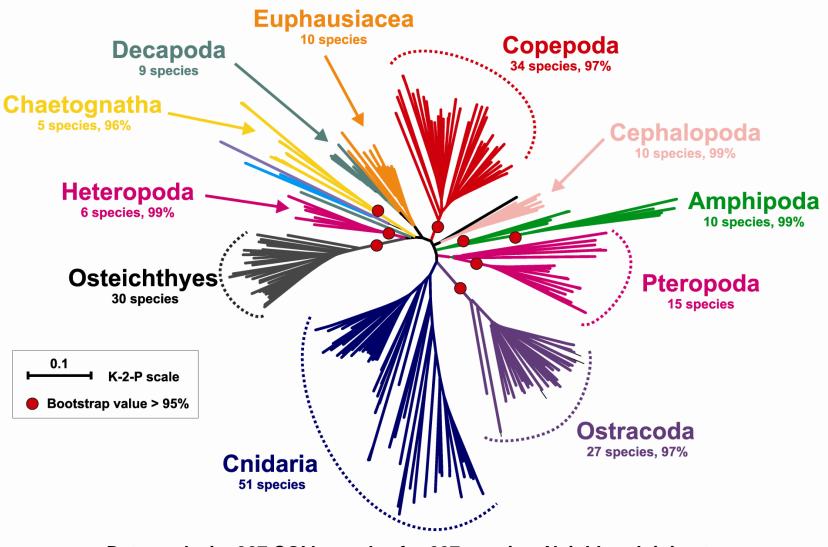
T. elongata 1191 dentipes 1235

O. parabathyalis 1262

---- 93/90/ /10

O. prendeli 1260

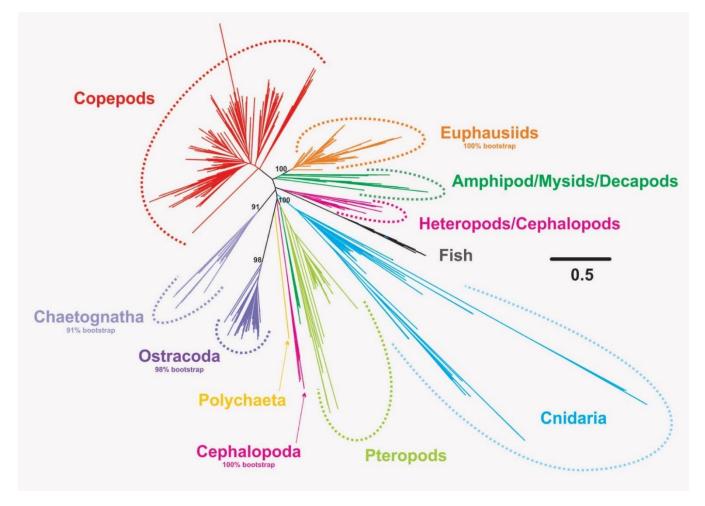
conifera 1264, 1265


T. umerus 1239, 1240

O. mediterranea broad form 1196

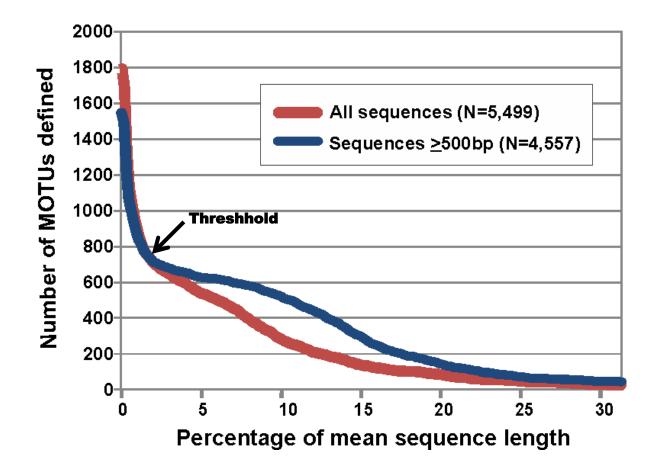
Oncaea sp.7 1236, 1237

Barcoding Zooplankton Communities

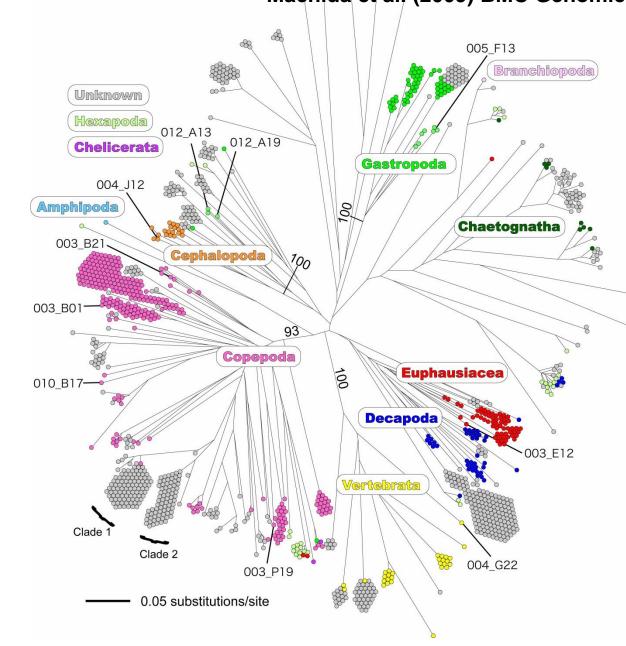

Bucklin, Ortman, Jennings, Nigro, Sweetman, Copley, Sutton, Wiebe (2010) Deep-Sea Res. II

Data analysis: 327 COI barcodes for 207 species; Neighbor Joining tree, Kimura-2-Parameter distances, 1000X bootstrapping

Zooplankton COI Barcode Sweep-up

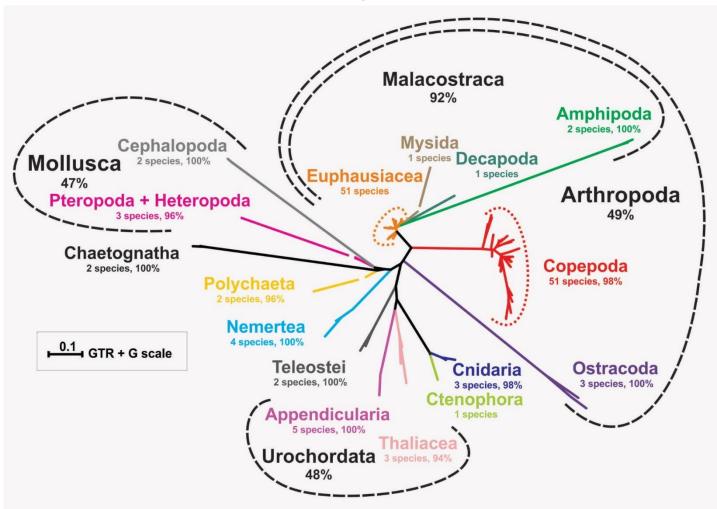

- Total of 4,557 COI sequences of zooplankton and fish collected 1992-2011
- Specimens identified to species by taxonomic experts
- Species are discriminated; major groups cluster, but not all are well-resolved.

Data analysis: MEGA Ver. 6; sequence alignment in MAFFT; Maximum Likelihood (ML) tree in RAxML Ver. 7.2.8. - Bucklin et al. (2014) OSM Poster


Zooplankton COI Barcode Sweep-up

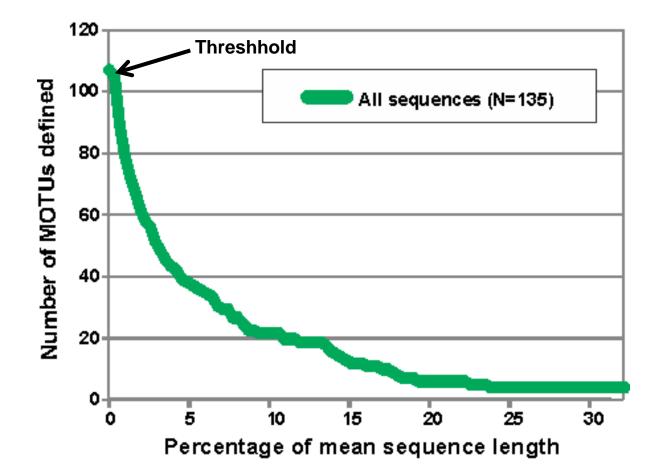
Threshold indicates 2% COI sequence difference for MOTU differentiation

Data analysis: Numbers of MOTUs (Molecular Operational Taxonomic Units) resolved as a function of percentage of mean sequence length in jMOTU. Diversity and species identification using automated Basic Local Alignment Search Tool (BLAST).

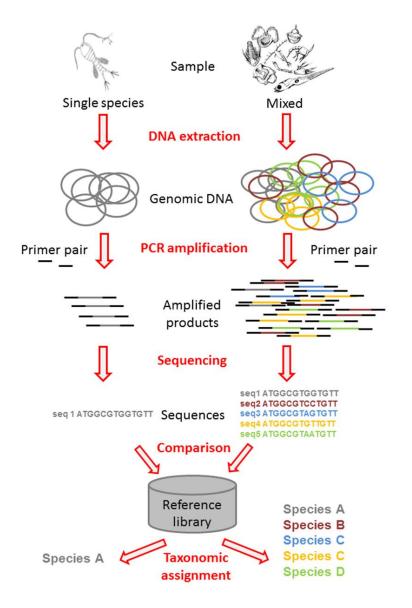

Metagenetic Analysis of Zooplankton Diversity Machida et al. (2009) BMC Genomics

- Zooplankton net sample from Equatorial Pacific Ocean.
- Total of 1,336 COI sequences resolving 189 species.
- NJ tree; K2P distances (0.12 species threshold); 1000X bootstrap.
- Species identification requires COI reference database.

Zooplankton 18S rRNA Barcode Sweep-up


- Consistent divergence across taxa
- Accurate classification of novel sequences
- Resolution of most groups, not species

Data analaysis:136 species; 8 phyla; ML tree; GTR+G distances 1000X boot-strapping; 18S primers: Fonseca et al. (2010). - Bucklin et al. (2014) OSM Poster


Zooplankton 18S rRNA Barcode Sweep-up

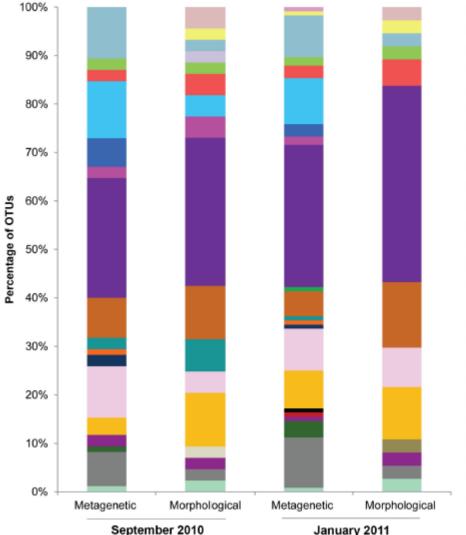
Threshold indicates <1% 18S sequence difference for MOTU differentiation

Data analysis: Numbers of MOTUs (Molecular Operational Taxonomic Units) resolved as a function of percentage of mean sequence length in jMOTU

Metabarcoding Analysis of Zooplankton Diversity

- Metagenetics: large-scale high-throughput DNA sequencing of target genes from environmental samples for analysis of taxon richness.
- Metabarcoding: analysis of a barcode gene using metagenetics.
- Integrative taxonomic analysis: metabarcoding analysis that matches MOTU to DNA sequence for morphologically-identified species in reference database.

Figure: Corell and Rodríguez-Ezpeleta (2014)

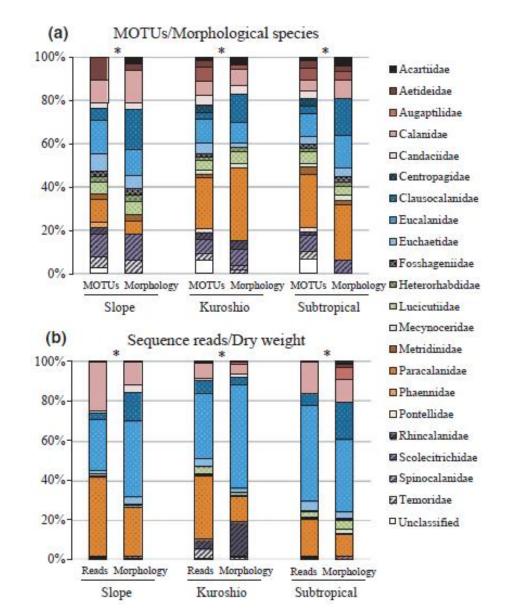

Prospects and Pitfalls of Metabarcoding

Bucklin, Lindeque, Rodriguez-Ezpeleta, Albaina, Lehtiniemi (2016) J. Plankton Res

- Rapid monitoring and assessment of biodiversity, including hidden diversity associated with cryptic, rare, and invasive species.
- Coordinated analysis across broad array of taxa: holoand mero-zooplankton, microbes to metazoans.
- Multiple genetic markers can be used to characterize diversity across a range of systematic levels.
 - Conserved genes for higher PCR success rates, may underestimate species diversity.
 - Variable genes may cause PCR artefacts, allow detailed assessment of species diversity.

Metagenetic Analysis of Zooplankton Diversity

Lindeque, Parry, Harmer, Somerfield, Atkinson (2013) PLoS ONE 8: e81327.



- Metagenetic analysis reveals "hidden diversity" of marine plankton.
 - nuclear 18S rRNA
 - 419,041 sequences
 - 205 OTUs (clusters)
 - 58 taxa
- Need complete reference libraries of sequences for accurately-identified individuals.

Metagenetic Analysis of Copepod Community Structure

Hirai, Kuriyama, Ichikawa, Hidaka, Tsuda (2014) Molecular Ecology Resources

- Calanoid MOTUs (97% similarity) showed significant correlation between metagenetic and morphological analyses.
- Family-level composition of molecular operational taxonomic units (MOTUs) and morphological species.
- Family-level composition of sequence reads and dry weight.

C. de Vargas

L. Madin

Barcoding and Metabarcoding

- Species-level analysis of pelagic
 biodiversity is critical for understanding
 impacts of climate change, detecting
 invasive species, and management and
 assessment objectives.
- Metabarcoding analysis of zooplankton samples allows rapid characterization of zooplankton diversity; usual marker gene regions do not discriminate species.
- Species identification by barcoding or metabarcoding requires matching DNA sequence to barcode for morphologicallyidentified specimen in a reference database.

Call to Action

- Comprehensive reference databases are needed for all barcode genes.
- Coordinate taxon- and region-specific barcoding efforts.
- Collaborate with morphological taxonomic experts, share archived DNA and specimens from previous field programs, and sequence multiple barcode regions for identified specimens.
- Species-level protocols for metagenetic analysis of zooplankton diversity.

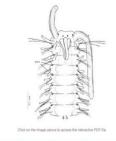
ICES WGIMT

Working Group on Integrated Morphological and Molecular Taxonomy

WGIMT Goals

- Promote and provide new tools for species-level taxonomic analysis of the pelagic ecosystem.
- Focus on species recognition, discrimination, and identification of marine metazoan zooplankton, detection of cryptic species, evolutionary / systematic relationships of species.
- Contribute to the ICES mission to analyze, recognize, and understand changes in community structure, species diversity, and species phenology and productivity.

See: <u>http://www.ices.dk/community/groups/Pages/WGIMT.aspx</u>


WGIMT Web Portal: Resources to Support Integrative Taxonomy of Zooplankton

Morphological Methods

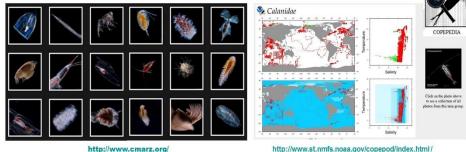
Links to taxonomic resources for species identification of marine zooplankton


ICES Zooplankton Identification Leaflets

ICES Plankton Identification Leaflets, 1939-2001 (Including Fiches d'Identification du Zooplancton and ICES Identification Leaflets for Plankton, 1-187, and Fiches d'Identification des Oeufs et Larves de Poissons, 1-6)

Optical Methods

- Promote integrated optical, molecular, and morphological approaches to zooplankton species identification.
- Resource for training of image recognition software.
- Similar portal for phytoplankton operated by ICES WGPME.



WGIMT.net Main Menu About WGIMT Morphological Methods Identification Keys Photos **Optical** Methods Literature Molecular Methods Primers & Protocols Literature * **Topics of Interest** Workshops & Events News

★ Related Links

Photo Gallery

High-quality images of living zooplankton. Software will allow posting and organizing images for easy access and viewing. Left: Photos from the Census of Marine Zooplankton (CMarZ) and other participating programs will be reproduced. Right: Images will be cross-linked to WGIMT/WGZE taxonomic database entries, with alternate access via the NOAA Copepod website and Copepedia (now in development by Todd O'Brien, NOAA).

Molecular Methods

- Listing of PCR and sequencing primers for zooplankton.
- Various marker genes: mitochondrial (COI, 16S rRNA) and nuclear (18S rRNA)
- Universal (conserved), group-specific and speciesspecific primers.

GENE	TAXON	PRIMER	-	PRIMER SEQUENCE	REFERENCE
MtCOI	Copepods	Cop-COI-2105R	R	CGRTCHGTHARNARYATDGTAATDGC	Bucklin et al. 2010a
MtCOI	Copepods	Crus-COI-2198R	R	CCHACDGTAAAYATRTGRTG	Bucklin et al. 2010a
MtCOI	Copepods	Crus-COI-2428R	R	TTAATHCCHGTDGGNACVGCAAT	Bucklin et al. 2010a
MtCOI	Copepods	HCO-Co-2358	R	CCHACDGTAAAYATRTGRTG	Bucklin et al. 2010b
MtCOI	Calanoida	LCO-1708	F	CTATTTGATTGGAGGATTTGG	Hill et al. 2001
MtCOI	Calanoida	LCO-1719	F	GGATTTGGTAACTGATTAGTGCC	Hill et al. 2001
MtCOI	Calanoida	H2612-COI	R	AGGCCTAGGAAATGTATAGGGAAA	Figueroa 2011
MtCOI	Calanoida	L592-RCOI	F	AACCTTAATACATCTTTTTATGATG	Figueroa 2011
MtCOI	C. helgolandicus	ChelgCOI-F	F	GGCCAAAACAGGGAGAGATA	Papadopoulos et al. 2005
MtCOI	C. helgolandicus	ChelgCOI-R	R	CGGGACTCAGTATAATTATTCGTCTA	Papadopoulos et al. 2005

	10. q1/439308109/gb/80594151.1/_Oithins_simples_isola			
	11. gi(499938187/gb/HC994150.1/_Oithons_simples_iscla			
	12. gil459959105(gb/HC594149.1)_Oithons_simples_isola	TTTATCA CAR CALCULATER DA		
	13. gii459930183/gb/#C594148.11_Oishona_simples_imple	TTATERT TRETTERTRETARTARTATETARTETARTETA		
	14. gli459938101/gb/HC094147.1/_Oishona_simples_imple	TTTATCATUAT COTTECTATEATAKTAKTATECTAATECTAATETTUKETAACTABTACTATEATEATEATEKATEATETTIKATA	1	
18	15. gl/459938179(gb/8C594146.1)_01thccs_simples_issle	. U E DATEN T EN TENTE TA		ł
	14. gl/459938177(gb/HC594145.1) Otthone simples isole			
	17. gol458956178/gor#C584144.11 Oithone coulate isole		a,	
	18. gil459930175:gb:HC554143.11 Dithona_coulata_isola	NY YA DOA DAA DA DOA DA BAADAA DA DO DA DO DA A DO DA A DO DA	1	l
18	18. gil439930172/gb/HC554142.11_Oithona_oculata_isila	TTTATEATAT TETTTATATEATATEATATEATATEATA		
	20. gil459908149(gb/#C594141.1) Otthona poulata isola	TTTATCATATUTTCTTATATCTATCTATCTATCTATCTTTTTTTT		
	The get threaders to be and the second straining and		T	
	22. OLISISSINGSI ON INTERING AL OLIVORA ATTACATA LAN		а	ł
	25. gl/189792192/gb/E0599544.11_Oithona_mimilis_vooch			
	24. gill937921901gB1E0599545.11_Oishona_similis_vouch		т	l
18	25. gli193792168/gb/ED599542.11_Oithons_similis_vouch	TTTATEATATEATETTTATATEAATETATETTATETTA	÷	ł
18	24. gil347345858/gb128230871.11_Oithona_similis_vouch	***************************************	т	l
	27. gli547545654/gb:28230870.11 dithona stmills wouth	TTTATTATTATTATTTTTATATTATTATTATTTTTTTT	т	ł
	28. g1(547565654(ge)28250549.1) Others similia worth	TTATATATATATATATATATATATATATATATATATAT	1	l
	29. gillsettettiger.2020048.11 Oithess similie vouch	TTTATTATTATTATTATTATTATTATTATTATTATTATT	1	í
-				ł

 Potential and promise of metabarcoding for rapid detection of climate change, biotic indices, food webs, NIS. Figure from Corel & Rodriguez (2014)

Call to Action: Reference Barcode Database

Barcoding / Metabarcoding Studies at ZPS 2016

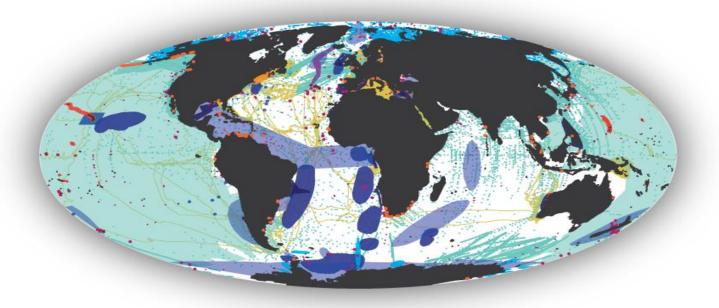
TAXONOMIC FOCUS

Astrid Cornils: Copepods Tone Falkenhaug: Copepods / cladocerans (Norwegian Sea) Sergio Hernandez Trujillo: Calanoid copepods (Gulf of California) Junya Hirai: Copepods (Pacific Ocean) Aino Hosia: Hydrozoans (Norwegian Sea) Panagiotis Kasapidis: Copepods (Mediterranean / Black Seas) Glafira Kolbasova: Scyphozoa Sanna Majaneva: Ctenophores Mary Mar Noblezada: Copepods Stephanie Bush: Pteropod molluscs Jasmin Renz: Copepods (benthopelagic)

Call to Action: Reference Barcode Database

Barcoding and Metabarcoding Studies at ZPS 2016

REGIONAL FOCUS


Paola Batta-Lona: Gulf of Mexico Leocadio Blanco-Bercial and Samiah Alam: Sargasso Sea Ann Bucklin: NW Atlantic continental shelf Erica Goetze: North Pacific Silke Laakmann: North Sea Penelope Lindeque: North Atlantic Ryuji Machida: Pacific Inga Mohrbeck: North Sea Naiara Rodriguez-Ezpeleta: Malaspina circumnavigation Sergio Stefanni: Adriatic / Mediterranean Seas Lidia Yebra: Alboran Sea

ENVIRONMENT / HABITAT FOCUS

Holger Auel: Midwater / deep sea David Abad: Estuaries Oliver Kersten: Abyss

Call to Action: Census of Marine Life Projects

- Census of Marine Life (CoML) ocean realm field projects sampled throughout global ocean environments
- Barcoding in partnership with Consortium for Barcode of Life (CBoL)

Coastal

Regional Ecosystems (GoMA)
 Near Shore (NaGISA)
 Coral Reefs (CReefs)

Polar

Arctic Ocean (ArcOD)
 Antarctic Ocean (CAML)

Pelagic

Top Predators (TOPP)
 Continental Shelves (POST)

Zooplankton (CMarZ)

Deep Sea

- Vents and Seeps (ChEss)
- Abyssal Plains (CeDAMar)
- Seamounts (CenSeam)
- Continental Margins (COMARGE)
- Mid-Ocean Ridges (MAR-ECO)

Global Information and Anaylsis

- Oceans Future (FMAP)
- Information Systems (OBIS)
- Microbes (ICoMM)
- Oceans Past (HMAP)

Call to Action

- Comprehensive reference databases are needed for all barcode genes.
- Coordinate taxon- and region-specific barcoding efforts.
- Collaborate with morphological taxonomic experts, share archived DNA and specimens from previous field programs, and sequence multiple barcode regions for identified specimens.
- Species-level protocols for metagenetic analysis of zooplankton diversity.

Acknowledgements

Census of Marine Zooplankton (CMarZ) 2004 - 2010

Project Lead Scientists

Ann Bucklin – University of Connecticut, USA

Shuhei Nishida – AORI, University of Tokyo, Japan

Sigrid Schnack-Schiel – Alfred Wegener Institute, Germany

Peter Wiebe – Woods Hole Oceanographic Institution, USA

Communications Coordinator

Nancy Copley – Woods Hole Oceanographic Inst., USA

Data Management Office

Robert Groman and Dicky Allison – Woods Hole Oceanographic Inst., USA *CMarZ Steering Group Members*

24 scientists from 14 countries

CMarZ Planning Group Meeting - 2003

CMarZ Steering Group Meeting - 2010

Acknowledgements

ICES Working Group on Integrated Morphological and Molecular Taxonomy (WGIMT)

WGIMT Members at the 2016 Annual Meeting, IPMAR, Lisbon, Portugal (March 20, 2016)

